ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Fossils reveal that primates initially had nails and claws, we just lost the latter ones

Tighter social groups and a three-borne lifestyle likely prompted the switch.

Alexandru MicubyAlexandru Micu
June 25, 2018
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

If you like having nails instead of claws, give a shout-out to society.

Nails.
Image credits Daniel Nebreda.

Unlike other mammals, us humans and our primate cousins sport nails instead of claws. However, this wasn’t always the case — new fossil evidence shows that ancient primates had specialized grooming claws as well as nails. The findings showcase how primate social structure helped shift claw and nail evolution, the team writes, and overturns our assumption that the earliest primates had nails on all their fingers.

Nailed it

“We had just assumed nails all evolved once from a common ancestor, and in fact, it’s much more complicated than that,” said Jonathan Bloch, study co-author and curator of vertebrate paleontology at the Florida Museum of Natural History.

Grooming goes beyond just looking good. The thick body hair of primates is an ideal habitat for ticks, lice, and a whole host of other creepy crawlies which are both annoying and potential health hazards. As such, the ability to remove these pests formed an evolutionary advantage — and they evolved specialized grooming claws for the purpose. Many primates today retain such claws. Lemurs (subfamily Lemuroidea), lorises (subfamily Lorinae), and galagoes (family Galagidae) have grooming claws on their second toe, while tarsiers (family Tarsiidae) boast them on their second and third toe.

Up to now, we’ve believed that grooming claws developed independently across several primate lineages up to those alive today. However, new fossil evidence suggests that such claws are, rather, a key feature — they date back at least 56 million years, to the oldest-known primates.

Back in 2013, the study’s lead author Doug Boyer found several curious primate fossils at the University of California Museum of Paleontology. These fossils — distal phalanges, the bones that make the tips of fingers or toes — were hidden in sediment samples collected in Wyoming several decades earlier; as often happens, however, they were left waiting in a drawer in the archives. Based on the shape of these fossils, Boyer suspected that their owners sported grooming claws — in general, distal phalanges topped with a claw will be more narrow and tapered, while those supporting a nail will be flat and wide.

Grooming claws.
Lemurs, lorises, and galagoes have nails on most digits and grooming claws on their second toes, as seen on the feet of two greater slow lorises, Nycticebus coucang, in the Florida Museum mammals collection.
Image credits Kristen Grace / Florida Museum.

Bloch’s work involved material recovered from Bighorn Basin, Wyoming. He discovered what initially looked like a “strange, narrow nail” bone, but on later comparison with modern specimens “it looked just like a tarsier grooming claw,” he recounts. Although smaller than a grain of rice, the bone matched the proportions of grooming claws of Teilhardina brandti, a mouse-sized, tree-dwelling primate.

Claw me, claw thee

These were the first hints that the fingers of early primates had grooming claws. To get to the bottom of things, the duo went out to Omomys Quarry, Wyoming, a site once inhabited by an early primate family, Omomys. Here, they found omomyoid grooming claws at three sites spanning 10 million years in the fossil record. The fossils proved beyond a doubt that early primates sported grooming claws.

RelatedPosts

Same-Sex Behavior Is Surprisingly Common in Animals — Humans Are No Exception
Gene mutation helped early humans cope with smoke infested caves, but not Neanderthals
No matter what your native language is – we all speak the same, study finds
Female monkeys use male “hired guns” to protect them from predators

Why, then, don’t we have some as well?

“The loss of grooming claws is probably a reflection of more complex social networks and increased social grooming,” said Boyer, an associate professor in the department of evolutionary anthropology at Duke University.

“You’re less reliant on yourself.”

This hypothesis could also explain why some species of (more) solitary primates, such as the titi (subfamily Callicebinae) or owl monkeys (family Aotidae) have re-evolved a grooming claw.

But why develop nails in the first place? The team believes it came down to shifts in how primates got around. As climbing, leaping, and grasping took center stage, claws simply became impractical — whereas nails wouldn’t snag or get in the way of anything.

Furthermore, the claws provide new insight into the lives of ancient primates, the team notes, many of which are only known from fossil teeth. Even these tiny claws can offer insight into how our ancestors moved about, their daily behavior, and their social structures.

“We see a bit of ourselves in the hands and feet of living primates,” Bloch said. “How they got this way is a profoundly important part of our evolutionary story.”

The paper “Oldest evidence for grooming claws in euprimates” has been published in the Journal of Human Evolution.

Tags: Clawsgroominghumansmammalsmonkeynailsprimate

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Animals

From Pangolins to Aardvarks, Unrelated Mammals Have Evolved Into Ant-Eaters 12 Different Times

byTudor Tarita
2 weeks ago
Economics

Your nails could be a sign of whether a recession is coming or not

byMihai Andrei
2 months ago
Animals

Same-Sex Behavior Is Surprisingly Common in Animals — Humans Are No Exception

byMihai Andrei
4 months ago
News

Humans should be better at voting than monkeys. But are we, really?

byMichael Platt
10 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.