ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Evolving legs from fins was surprisingly simple, new study finds

New research shows that the first vertebrates had a surprisingly easy time adapting from fins to legs.

Mihai AndreibyMihai Andrei
March 9, 2016
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

How Some Flowers Evolved the Grossest Stench — and Why Flies Love It
The First Teeth Grew on the Skin of 460-Million-Year-Old Fish and Were Never Meant for Chewing
Humans got smarter to care for needy infants, making them more helpless in the process
Different species can emerge in only two generations, new study reveals

New research shows that the first vertebrates had a surprisingly easy time adapting from fins to legs. A new study found that 360 million years ago, legs and fins had no major structural difference.

Axolotls at Vancouver Aquarium. Photo by ZeWrestler.

The research was carried out by Dr Marcello Ruta from the School of Life Sciences at the University of Lincoln and Professor Matthew Wills from the Milner Centre for Evolution at the University of Bath in the UK. They overturned the classical belief that the appearance of legs triggered a diversification in vertebrate skeletons, finding that similar levels of anatomical diversity within their fins and limbs, despite the fact that their skeletons were constructed in very different ways.

The evolution of limbs triggered a revolution in animal evolution, opening up a new realm for animals: dry land. However, they weren’t quick in giving up the fin skeletal structure. Dr Marcello Ruta said:

“Our work investigated how quickly the first legged vertebrates blossomed out to explore new skeletal constructions, with surprising results. We might expect that early tetrapods evolved limbs that were more complex and diverse than the fins of their aquatic predecessors. However, although radically different from limbs, the fins of the distant fish-like forerunners of tetrapods display a remarkable array of subtly varying traits.

“This variation may point to a previously unsuspected range of biomechanical functions in their fins, despite the fact that those ancestors lived exclusively in water.”

Professor Matthew Wills added:

“It has usually been assumed that when organisms evolve novel attributes that enable them to colonise fundamentally new environments — as in the move from water to land — this should trigger rapid evolutionary diversification and be accompanied by an increase in structural variety. Our work challenges this received wisdom, and shows that, at least in the case of the evolution of early tetrapods, key innovations did not quickly lead to greater anatomical variety.

“For the first time, legs had evolved to fulfill new functions. Not only must they be able to support the weight of the body on land, but they also needed to enable the animal to walk. Perhaps these dual requirements limited the number of ways in which these first legs could function and evolve, thereby constraining their range of variability.”

The study has significant implications for how biological systems are studied – both past and present – especially when we’re dealing with diversification stages. It also shows that no matter how significant and vital the evolutionary stage was, it can still take millions of years to pan out.

Journal Reference:

  1. Marcello Ruta, Matthew A. Wills. Comparable disparity in the appendicular skeleton across the fish-tetrapod transition, and the morphological gap between fish and tetrapod postcrania.Palaeontology, 2016; 59 (2): 249 DOI: 10.1111/pala.12227
Tags: evolutionfinlimb

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Geology

Scientists Analyzed a Dinosaur’s Voice Box. They Found a Chirp, Not a Roar

byTudor Tarita
3 weeks ago
butterfly plants
Animals

How Some Butterflies Fooled Evolution and Developed a Second “Head”

byTudor Tarita
4 weeks ago
Genetics

These Wild Tomatoes Are Reversing Millions of Years of Evolution

byTudor Tarita
1 month ago
Biology

Scientists Created an Evolution Engine That Works Inside Animal Cells Like a Biological AI

byTibi Puiu
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.