ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

Laser-light sheets used to image life at its earliest stage [GREAT PICS]

Tibi PuiubyTibi Puiu
June 10, 2013
in Animals, Biology, Great Pics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Artificial embryo without sperm or egg forms live fetus
The human egg locks like Fort Knox after it’s fertilized. Scientists finally find out how
Genetically modifying human embryos: ‘a line that should not be crossed,’ NIH says
First was the limb, then was the penis: study unravels Genitalia Evolution
Image of the ~50,000 cell nuclei of a 22-hour-old zebrafish embryo. The fluorescently labeled cell nuclei are shown in a blue-to-red color code that indicates depth in the image.
Image of the ~50,000 cell nuclei of a 22-hour-old zebrafish embryo. The fluorescently labeled cell nuclei are shown in a blue-to-red color code that indicates depth in the image.

A new visualization technique developed by researchers at the Howard Hughes Medical Institute used a thin sheet of laser light that beams, stepwise, into different planes of a specimen to create intricate and detailed snapshots of cells. In these pictures featured above and below you can see how zebrafish and fruit fly embryos were imaged using this novel technique.

By following the color-coded cells of a Drosophila embryo (top) over time, each cell’s lineage becomes trackable (bottom) with simultaneous multi-view light sheet microscopy.
By following the color-coded cells of a Drosophila embryo (top) over time, each cell’s lineage becomes trackable (bottom) with simultaneous multi-view light sheet microscopy.
Image of the ~6,000 cell nuclei of a 3-hour-old fruit fly embryo. The fluorescently labeled cell nuclei are shown in a blue-to-red color code that indicates depth in the image.
Image of the ~6,000 cell nuclei of a 3-hour-old fruit fly embryo. The fluorescently labeled cell nuclei are shown in a blue-to-red color code that indicates depth in the image.

Here’s how it all works:

“The laser light causes the cells in the illuminated plane to fluoresce while a set of two or four cameras gather snapshots of every cell in the plane from several different angles. By taking pictures as the embryo rotates through the beam, Keller collects a set of planar views which are assembled into a dynamic three-dimensional depiction of the embryo at any given time during its 21 or more hours of development.”

A SiMView microscope uses lasers to illuminate specimens while two cameras to the left and to the right of the central imaging chamber capture shots of the specimen’s cells from different angles.
A SiMView microscope uses lasers to illuminate specimens while two cameras to the left and to the right of the central imaging chamber capture shots of the specimen’s cells from different angles.
Tags: embryo

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

The human egg locks like Fort Knox after it’s fertilized. Scientists finally find out how

byTibi Puiu
1 year ago
Biology

Scientists grow synthetic embryos without any sperm, egg, or even a womb

byTibi Puiu
3 years ago
News

Right before they hatch, baby birds have hip bones shaped exactly like a dinosaur’s pelvis

byTibi Puiu
3 years ago
Health

Artificial embryo without sperm or egg forms live fetus

byTibi Puiu
6 years ago

Recent news

Bioengineered tooth “grows” in the gum and fuses with existing nerves to mimic the real thing

June 13, 2025

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

June 13, 2025

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.