Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Biology

Gold-digging bacterium makes precious particles

Mihai Andrei by Mihai Andrei
February 5, 2013
in Biology, Science

Gold prospecting’s future may very well lie in a Petri dish – a species of bacterium forms nanoscale gold nuggets to help it to grow in toxic solutions of the precious metal, according to a new study published in Nature Chemical Biology.

gold The bacteria could be used to collect gold from mine waste, says Frank Reith, an environmental microbiologist at the University of Adelaide in Australia, who works on gold-processing bacteria but was not involved in the study. Mining methods have an extraction efficiency that technically varies between 50% and 99% – though extremely high efficiencies are very rare.

At multiple sites, thousands of kilometres apart, researchers found the bacterium Cupriavidus metallidurans living in so-called biofilms on gold nuggets; biofilms are aggregates of microorganisms in which cells adhere to each other on a surface. The gold is toxic for the bacteria, so it detoxified dissolved gold by accumulating it in inert nanoparticles inside their cells. A definite conclusion on how that works exactly has not been published yet.

However, these biofilms also contained a second type of bacterium: Delftia acidovarans – relevant to this study; when Nathan Magarvey, a biochemist at McMaster University in Hamilton, Canada, and his team grew this species in the presence of a gold solution, they found that the bacteria colonies were surrounded by dark haloes of gold nanoparticles. They concluded that this bacteria somehow isolates the gold particles outside of its cell, unlike inside, like Cupriavidus.

They then analyzed the bacteria biochemically and genetically, finding the set of genes and a chemical metabolite that were responsible for precipitating the gold. Bacteria engineered without these genes generated no gold, and their growth was stopped by the mere presence of the element. They also isolated an entirely new chemical from the natural, non-engineered bacteria, that caused gold particles to precipitate out of a solution. The chemical was dubbed delftibactin.

It is actually possible that the two bacteria live in symbiosis, with one of them using delftibactin to diminish the soluble gold to levels that both species can cope with. But what’s more interesting from an economic point of view, is that this research paves the way for an entirely new wave type of microbe-assisted gold rush.

Via Nature

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Mars 2020 rover will go digging for fossils — on Mars
  2. Earliest-known mammal, identified by its fossilized teeth, was digging burrows while dinosaurs were still evolving
  3. Research suggests turtle shells evolved for digging, not protection
  4. Debunking Arsenic life: bacterium prefers phosphorous after all
  5. This bacterium shoots wires out of its body to power itself

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW