ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

That ATM keyboard you’ve touched earlier is covered in germs from all over town

Tap, tap, microbe map.

Alexandru MicubyAlexandru Micu
November 29, 2016 - Updated on June 21, 2023
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

ATMs may be excellent city-wide DNA repositories, a new New York University study concludes. Their keypads are a melting pot for bugs from human skin, household surfaces, even traces of food.

ATM
Image credits Emma Blowers / Pixabay.

News just in: ATM keyboards are just littered with germs, bits of people, and all sorts of DNA. With how much use these things see, it’s hardly surprising; but the range of what you can find here is. NYU scientists went around Manhattan, Queens, and Brooklyn, swabbing off of ATMs in eight neighborhoods. That netted them a total of 66 samples which they then compared with known microbial markers.

Just like the germs on our smartphones’ screens can tell a lot about our individual lifestyle, the germs on the ATM tell the story of a city. The team found a wide range of human skin microbes, most of which can be traced back to household surfaces such as TVs, restroom and kitchen surfaces, as well as pillows. Microbes associated with bony fish, mollusks, and chicken were also found in different neighborhoods, suggesting that residues from meals can find their way to the keypads upon use.

The team also points out that the data suggests a geographic zoning, but only for certain types of microbes.

“The sampling strategy was designed to target geographic areas with distinct ethnic and population demographics, known as neighborhood tabulation areas,” the paper reads.

Store- and laundromat-based ATM keypads showed the highest number of biomarkers, with Lactobacillales (lactic acid bacteria) being the most prominent. This kind of bacteria is usually found in spoiled or rotting milk products and plants — it’s what makes milk go sour and pickles become pickled. Samples taken in Manhattan tested positive for the biomarker Xeromyces bisporus, a mold that grows on spoiled backed goods. There was no significant difference in the biomarkers of indoor or outdoor ATMs.

“Our results suggest that ATM keypads integrate microbes from different sources, including the human microbiome, foods, and potentially novel environmental organisms adapted to air or surfaces,” explains senior author Jane Carlton, director of the Center for Genomics and Systems Biology and professor of biology at NYU.

“DNA obtained from ATM keypads may therefore provide a record of both human behavior and environmental sources of microbes.”

While most of you are probably going through an ew-fueled bristling right now, from a microbiologist’s point of view the findings are actually quite exciting. Because each machine sees probably hundreds of uses each day and come in direct contact with air, water, and microbes adapted to live on different types of urban surfaces, the communities sampled here represent an “average” — a snapshot of each city‘s own microbial footprint. Each ATM effectively pools strains from a lot of different sources together.

Still, the machine samples showed low diversity and apart from the few bugs I’ve mentioned earlier, there was no obvious geographic clustering. The team believes this low diversity comes down to periodic cleaning of the ATMs — which would wipe out some of the bugs. Tourists and commuters also have a hand to play in mixing the communities throughout town, the team said.

RelatedPosts

More grass, less asphalt. The best recipe for trees to provide ecosystem services
Oil seeps create thriving micro-ecosystem
World leaders pledge to fight drug-resistant bacteria
These are the world’s fastest growing cities. They’re all in Africa

Such mixing is probably limited to an in-city range, so in the end, each city might actually be unique — they may each have their own DNA.

The full paper “Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City” has been published in the journal mSphere.

Tags: ATMcitiesmicrobenew york

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Home science

The indoor microbiome: mounting research is revealing how the microbes in your home can influence your health

bysamuel white
11 months ago
Home science

Reimagining cities so that they’re actually good: can 15-minute cities really work?

byMihai Andrei
11 months ago
Diseases

NYC’s latest problem: rat urine and leptospirosis

byMihai Andrei
1 year ago
Studied horse chestnut trees growing in environments with a high and low degree of paving. Image credits: Janina Konarska.
Environment

More grass, less asphalt. The best recipe for trees to provide ecosystem services

byFermin Koop
2 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.