ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Researchers create automatic method to detect air pollution hotspots

It's an algorithm that can help tackle air pollution from existing satellite data.

Fermin KoopbyFermin Koop
April 20, 2021
in Diseases, Environment, Health, News, Pollution, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Imagine there could be a way to autonomously identify hotspots of heavy air pollution, city block by city block. Governments could then detect problem areas and develop targeted measures and achieve optimal results. Researchers at Duke University have developed just that: a method that uses machine learning, satellite images, and weather data to track localized PM2.5 pollution.

Image credit: Flickr / UN

Air pollution is by far one of the most severe environmental problems, on all scales from local to global. Exposure to fine particulate matter (also known as PM2.5) has wide-ranging adverse health effects on human health, with adverse effects on cardiovascular, cardiopulmonary, and respiratory wellness, to list just a few problems. It can lead to higher risks of mortality and loss of life expectancy.

Satellite data have been most commonly used for mapping PM2.5 at high resolution. With the help of the recent rapid advancements in satellite sensors and rise in computing power, a handful of satellite-based methods have succeeded in estimating ambient PM2.5 concentrations at sub-km levels with low uncertainties. But it’s not all rosy.

“Setting up sensor networks is time-consuming and costly, and the only thing that driving a sensor around really tells you is that roads are big sources of pollutants. Being able to find local hotspots of air pollution using satellite images is hugely advantageous, Mike Bergin, professor at Duke and co-author of the study, said in a statement. 

Bergin and the team of researchers wanted to further look into PM2.5 pollution but they could only access data on a county-by-county level — which really isn’t enough resolution. While valuable, this information doesn’t allow to look into a specific neighborhood close to a coal-fired plant, for example. Ground stations are expensive to build and maintain, so most cities only have a handful of them. So instead, Bergin and colleagues looked for an alternative.

In previous studies, the researchers showed that satellite imagery, weather data, and machine learning could provide PM2.5 measurements on a small scale. Now, the team has improved their methods and taught the algorithm to automatically find hotspots and cool spots of air pollution with a resolution of 300 meters. This is the average length of a New York City block, and sufficient to draw clearer conclusions about where the pollution is actually coming from. 

The new development was made possible thanks to a technique called residual learning. The algorithm created by the researchers first uses weather data to estimate the levels of PM2.5. Then it measures the difference between these estimates and the actual levels of PM2.5 and teaches itself to use satellite images to make its predictions better.

“Hotspots are notoriously difficult to find in maps of PM levels because some days the air is just really bad across the entire city, and it is really difficult to tell if there are true differences between them or if there’s just a problem with the image contrast,” David Carlson, co- author, said in a statement. “It’s a big advantage to be able to find a specific neighborhood that tends to stay higher or lower than everywhere else.”

While the methods it teaches itself can’t transfer from city to city, the algorithm should easily teach itself new methods in different locations, the researchers argued. Cities might evolve over time in both weather and pollution patterns but the algorithm shouldn’t have any trouble evolving with them. Plus, if air quality sensors improve as expected, the algorithm should also get better with time.

RelatedPosts

Daily household tasks like cooking and cleaning are a hidden source of air pollution, researchers say
Air pollution is reducing our life expectancy by more than two years
Eating fish may protect the brain from air pollution and white matter shrinkage
Prolonged exposure to Los Angeles Bay air induces dangerous mutations in the brains of rats

The study was published in the journal Remote Sensing. 

Tags: air pollution

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Health

Vehicle Brake Dust Could Be More Harmful Than Diesel Exhaust to Your Lungs

byTibi Puiu
3 months ago
Environment

The Invisible Threat: How Air Pollution Is Silently Reshaping Our Health

byTibi Puiu
3 months ago
Environment

Common air pollutants (and traffic noise) linked to infertility — both for men and for women

byMihai Andrei
5 months ago
Image credits: Flickr / Eric Demarcq.
News

Polluted air from rush-hour traffic increases blood pressure — even 24 hours later

byFermin Koop
1 year ago

Recent news

More People Are Dying from Broken Heart Syndrome Than Anyone Realized

May 20, 2025

Everything You Need to Know About Bird Flu

May 20, 2025

This beautiful rock holds evidence of tsunamis from 115 million years ago

May 20, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.