ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Astronomy

Saturn’s moon Titan has waves of methane crashing down on its coastline

It's one of the most Earth-like places in our solar system... except it's nothing like the Earth.

Mihai AndreibyMihai Andrei
June 20, 2024
in Astronomy, Geology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
a view of a lake on titan
Ligeia Mare — a sea on Titan. Image credits: NASA.

When NASA got a closer look at Titan in 2006, it saw a bizarre world. At first glance, it was a lot like the Earth: vast seas and lakes, erosional features like valleys and even rivers.

But Titan isn’t like Earth at all.

Its atmosphere doesn’t have oxygen, only nitrogen with a hint of methane. It’s rivers and seas aren’t water, but hydrocarbons. Its complex hydrological system involves methane rain feeding into rivers, lakes, and seas, predominantly located in Titan’s polar regions. These bodies of liquid hydrocarbons, particularly the expansive seas in the north polar region, resemble their terrestrial counterparts in both size and form, but the chemistry is completely different.

Now, a new study describes another piece to this Titanic puzzle: erosion. According to the study, the shorelines of Titan’s hydrocarbon seas are shaped primarily by wave-driven erosion, similar to coastal processes on Earth, rather than by uniform erosion or no coastal erosion at all.

Seas of hydrocarbon

more lakes on titan
A false-color image of lakes and seas on Titan. Image credits: NASA / JPL.

Titan, Saturn’s largest moon, has surface temperatures around -290 degrees Fahrenheit (-178 Celsius). At that temperature, you can’t have liquid water — but you can have liquid methane and ethane. These hydrocarbons are gases on Earth, but at the frigid temperatures of Titan, they turn into liquids.

This rare mix of chemistry and temperature makes Titan the only celestial body other than Earth with stable liquid bodies on its surface. These features, coupled with the moon’s complex weather patterns and geological activity, offer scientists a fascinating glimpse into processes that parallel those on Earth, albeit under vastly different conditions.

A team of geologists from MIT wanted to see if Titan’s shorelines also parallel those on Earth. They looked at images captured by the Cassini mission in 2006 to analyze the shape of the shores. They then developed computer models to simulate what types of erosion could have produced this type of shoreline.

RelatedPosts

Woman busted for trying to sell ‘moon rock’ for 1.7 million$
Geologists discover ancient meteorite on the Isle of Skye, in Scotland
NASA could have an orbiting moon base by 2023
Saturn is now the planet with the most moons

Previous research hinted at the possibility of wind-driven waves forming on Titan’s seas, potentially driving coastal erosion. However, direct evidence for waves on Titan has been elusive, with spacecraft observations providing only indirect clues. The new study, spearheaded by Rose Palermo from the USG, combines theoretical models with landscape evolution analyses to explore this phenomenon in greater depth.

The researchers discovered that the morphologies of these shorelines are most consistent with erosion by waves, rather than uniform erosion or no coastal erosion at all.

An image showing different types of lakes on Titan and on Earth. A) Cassini SAR image of Ligeia Mare, Titan (NASA). (B) Fort Peck Lake, United States, a reservoir formed recently by flooding a landscape previously eroded by rivers (C) Lake Rotoehu, New Zealand, a lake in which flooded river valleys have been subsequently eroded by waves D) Prošćankso Jezero, Croatia, a karst lake in which flooded river valleys have been eroded by dissolution. Image credits: Palermo et al.

Waves on Titan

If you could stand on Titan’s shoreline, you could probably see the waves coming in and out, moving bits of rock and sand around as they do.

The study’s findings suggest that Titan’s northern seas, such as Kraken Mare and Ligeia Mare, formed shores through a combination of river incision and wave erosion. River incision is the process by which flowing water cuts into and erodes the landscape, creating valleys and riverbeds.

This dual influence of fluvial and coastal erosion implies that Titan’s landscape has been significantly reshaped over time — much like Earth. The findings also highlight the potential for Titan’s shorelines to preserve evidence of past environmental conditions, much like terrestrial coastlines do on Earth.

However, there’s one big difference compared to Earth: life. Life can also play a role in erosion, but on Titan, there’s no life to interfere with the process. It’s a system that’s been left untouched for eons.

Future missions, such as NASA’s Dragonfly rotorcraft — set to explore Titan in the 2030s — could provide direct observations of wave activity and shoreline processes, enhancing our understanding of this intriguing moon.

For now, researchers want to explore Titan’s erosion in even greater detail by looking at the winds on the moon.

The study was published in Science.

Tags: GeologyMoonsaturntitan

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

China and Russia Plan to Build a Nuclear Power Plant on the Moon by 2035 Leaving the US Behind

byTibi Puiu
3 weeks ago
News

Nature Built a Nuclear Reactor 2 Billion Years Ago — Here’s How It Worked

byMihai Andrei
1 month ago
Biology

Researchers can’t rule out the possibility of life existing on Titan

byMihai Andrei
2 months ago
Science

A Rare ‘Micromoon’ Is Rising This Weekend and Most People Won’t Notice

byTibi Puiu
2 months ago

Recent news

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025

In the UK, robotic surgery will become the default for small surgeries

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.