ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Neptune’s Great Dark Spot is also shrinking

Another one bites the dust.

Mihai AndreibyMihai Andrei
February 21, 2018
in Astronomy, News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

After just yesterday we wrote that Jupiter’s emblematic Giant Red Storm was quieting down, Neptune’s own giant storm is about to suffer the same fate.

Dark spot on Neptune full color (left) and blue light (right).

Although not as famous and easily visible as the Great Red Spot, Neptune’s Great Dark Spot (creative names, I know) has its own remarkable history. Also an anticyclonic storm, the first Dark Spot was first observed in 1989 by NASA’s Voyager 2. It was big enough to cover the entire Atlantic, from the US to Europe’s West Coast, but unlike Jupiter’s storm, it had a much shorter lifespan. I say “the first” Dark Spot because, since its discovery in 1989, several others have appeared and disappeared, and the initial one is long gone. Hubble discovered two dark storms that appeared in the mid-1990s and then vanished. The current storm was first observed in 2015, but it’s already shrinking.

We don’t really know that much about Neptune. The farthest planet from the Sun (sorry Pluto) remains largely a mystery, with most of our information coming from remote observations or from the Voyager days. The way it was discovered says a lot about this: Neptune was the first and only planet in our Solar System found by mathematical prediction rather than by empirical observation. Astronomers believe that Neptune has a solid rock core, a mantle consisting of water, ammonia and methane ices, and an atmosphere. The top of the atmosphere is covered by top clouds, while the rest consists of hydrogen, helium, and methane  The Dark Spot is interesting because it allows astronomers to indirectly deduce certain aspects about Neptune’s atmosphere.

The Great Dark Spot is thought to represent a hole in the methane cloud deck of Neptune, generating large white clouds made of frozen methane. The dark spot itself might also contain hydrogen sulfide, a substance commonly found in crude petroleum, natural gas, volcanic gases, and hot springs.

It seems a bit strange if you think about it — why would white clouds, including ice, create a dark spot? Well, it isn’t that they’re necessarily dark, just that they’re less bright than the rest of the atmosphere. Joshua Tollefson from the University of California at Berkeley explained.

“The particles themselves are still highly reflective; they are just slightly darker than the particles in the surrounding atmosphere.”

This series of Hubble Space Telescope images taken over 2 years tracks the demise of a giant dark vortex on the planet Neptune. The oval-shaped spot has shrunk from 3,100 miles across its long axis to 2,300 miles across, over the Hubble observation period. Image credits: NASA, ESA, and M.H. Wong and A.I. Hsu (UC Berkeley).

But other than this, we don’t really know much about the nature of these storms. We don’t know why or how they form, and no missions other than Voyager and Hubble are able to visualize them.

“We have no evidence of how these vortices are formed or how fast they rotate,” said Agustín Sánchez-Lavega from the University of the Basque Country in Spain. “It is most likely that they arise from an instability in the sheared eastward and westward winds.”

Unlike Jupiter’s storms, Neptune’s storms don’t last as long. Neptune doesn’t have atmospheric conveyor belts, which keep the storm trapped, and it doesn’t have the proper atmospheric conditions to fuel the storm. So quite soon, the Dark Spot will fade away — but another one will eventually rise up to take its place.

RelatedPosts

India’s first autonomous reusable spaceplane makes successful runway landing
Molten exoplanets may explain the formation of Earth-like worlds
Bezos picks aerospace pioneer Wally Funk to join him on space flight
[VIDEO] Watch Yuri Gagarin’s historic orbital flight entirely in “First Orbit”

 “It looks like we’re capturing the demise of this dark vortex, and it’s different from what well-known studies led us to expect,” said Michael H. Wong of the University of California at Berkeley, referring to work by Ray LeBeau (now at St. Louis University) and Tim Dowling’s team at the University of Louisville.

Tags: astronomyDark SpotneptuneSpace

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Archaeology

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

byTibi Puiu
2 weeks ago
Climate

Trump’s Budget Plan Is Eviscerating NASA and NOAA Science

byMihai Andrei
1 month ago
Science

A Rare ‘Micromoon’ Is Rising This Weekend and Most People Won’t Notice

byTibi Puiu
1 month ago
News

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

byTibi Puiu
1 month ago

Recent news

Scientists Blasted Human Cells With 5G Radiation and the Results Are In

May 15, 2025

Orange Cats Are Genetically Unlike Any Other Mammal and Now We Know Why

May 15, 2025

Scientists Found ‘Anti Spicy’ Compounds That Make Hot Peppers Taste Milder

May 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.