Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

New class of actuators gives nanobots legs (that work)

Now we're going places!

Alexandru Micu by Alexandru Micu
November 8, 2022
in News, Physics, Robotics, Science

A new paper brings us one step closer to creating swarms of tiny, mobile robots.

Artist’s rendition of an array of microscopic robots.
Image credits Criss Hohmann.

Science fiction has long foretold of sprawling masses of tiny robots performing tasks from manufacturing and medicine to combat — with the most extreme example being the Grey Goo. We’re nowhere near that point, yet, but we’re making progress.

A new paper describes the development of a novel class of actuators (devices that can generate motion) that is comparable with current electronics. These actuators are tiny and bend when stimulated with a laser, making them ideal to power extremely small robots. A lack of proper means of movement has been a severe limitation on our efforts to design very small robots so far, the team explains.

Finding their legs

“What this work shows is proof of concept: we can integrate electronics on a [tiny] robot. The next question is what electronics should you build. How can we make them programmable? What can they sense? How do we incorporate feedback or on-board timing?” lead author Marc Miskin, assistant professor of electrical and systems engineering at the University of Pennsylvania, told me in an email.

“The good news is semiconductor electronics gives us a lot of developed technology for free. We’re working now to put those pieces together to build our next generation of microscopic robots.

Actuators are the rough equivalent of engines. Although they rarely use the same principles, they’re both meant to do physical work (a motion that can be used to perform a certain task). The lack of an adequate actuator, both in regards to size and compatibility with our current electronics, has hampered advances into teeny-tiny robots.

Marc and his team hope to finally offer a solution to this problem. The actuators they developed are small enough to power the legs of robots under 0.1 mm in size (that’s about the size of a strand of human hair). The devices are compatible with silicon-based circuitry, so no special adaptations are needed to work with them in most settings.

These actuators bend in response to a laser pulse to create a walking motion; power, in this case, was supplied by onboard photovoltaics (solar panels). As for the sizes involved here: the team reports that they can fit over one million of their robots on a 4-inch wafer of silicon.

Given that the proof-of-concept robots are surprisingly robust, very resistant to acidity, and small enough to go through a hypodermic (syringe) needle, one particularly exciting possibility is to use them for medical applications or simple biomonitoring in human and animal patients — just like in the movies. I’ve asked Marc what other potential applications they’re excited for, and the possibilities do indeed seem endless:

“We’re thinking about applications in manufacturing (can you use them to form or shape materials at the microscale?), repairing materials (can you fix defects to increase material lifespan?), and using them as mobile sensors (can you send robots into say cracks in a rock or deep in a chemical reactor to make measurements and bring data back).”

However, he’s under no illusions that this will be an easy journey. “These are of course long term goals: right now all our robots can do is walk,” he notes.

Technology and know-how, however, have a way of compounding once released into ‘the wild’ of our economies. The advent of appropriate actuators might just be the nudge needed to walk us into a series of rapid improvements on nanomachines. And I, for one, couldn’t be more excited.

The paper “Electronically integrated, mass-manufactured, microscopic robots” has been published in the journal Nature.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. These legs were made for walking: T. Rex had legs built for marathons, not sprints
  2. Scientists observe nanobots coordinating inside a living host for the first time
  3. Remotely Controlling Neurons: Using Nanoparticle Actuators to Remotely Activate Neural Tissue (or, “Why Standing in Front of a Microwave Whilst Possessing Nanoparticles in your Brain is a Bad Idea.”)
  4. DNA nanobots deliver drugs in living cockroaches – it’s a computer, inside a cockroach
  5. Cell-membrane-coated nanobots successfully clear out 66% of bacteria and toxins in blood samples
Tags: actuatorsnanobots

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW