ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Other → Design

Ultra-white beetle could inspire next generation of paper and paints

Mihai AndreibyMihai Andrei
August 25, 2014 - Updated on February 22, 2019
in Design, News, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

The physical properties of the ultra-white scales on certain species of beetle could inspire researchers to make better, whiter paper, plastics or paint, using far less material.

Image via Cambridge University.

The Cyphochilus beetle, native to South-East Asia, is whiter than paper or even milk teeth. The whiteness of its body is caused by a thin layer of a highly reflective natural photonic solid in its scales. A new team investigation the beetle and its scales found that the white scales are able to scatter light more efficiently than any other known biological mechanism, which is how they are able to achieve such a whiteness.

In nature, there are several animals which are very white; they have this color for varying purposes, such as camouflage, communication or thermo-regulation (in very hot areas). However, being white is a rather complicated thing – you have to reflect all wavelengths of light with the same efficiency. The ultra-white Cyphochilus beetle does this through a dense, complicated network of chitin – a molecule similar in structure to cellulose commonly found in nature in the shells of mollusks, on the exoskeletons of many insects and in the cell wall of fungi.

“These scales have a structure that is truly complex since it gives rise to something that is more than the sum of its parts,” said co-author Dr Matteo Burresi of the Italian National Institute of Optics in Florence. “Our simulations show that a randomly packed collection of its constituent elements by itself is not sufficient to achieve the degree of brightness that we observe.”

Chitin is not very good at reflecting light itself, but over millions of years of evolution, the beetles have developed a complex network with extremely thin chitin filaments. It’s important for insects, especially flying insects, to be very light, so the chitin network has to be very efficient and light, like a painter who needs to whiten a wall with a very small quantity of paint. 

“Current technology is not able to produce a coating as white as these beetles can in such a thin layer,” said Dr Silvia Vignolini of the University’s Cavendish Laboratory, who led the research. “In order to survive, these beetles need to optimise their optical response but this comes with the strong constraint of using as little material as possible in order to save energy and to keep the scales light enough in order to fly. Curiously, these beetles succeed in this task using chitin, which has a relatively low refractive index.”

The exact mechanism through which they evolved this way still remains unknown – but that doesn’t mean that we can’t inspire technology from it. In recent times, many engineers have turned to nature for inspiration, with great results.

“The lessons we are learning from these beetles is two-fold,” said Dr Vignolini. “On one hand, we now know how to look to improve scattering strength of a given structure by varying its geometry. On the other hand the use of strongly scattering materials, such as the particles commonly used for white paint, is not mandatory to achieve an ultra-white coating.”

The results of this study could have a myriad of applications, most notably enabling white materials such as paper, plastics, paints, as well as white-light reflectors inside new-generation displays to be made whiter more efficiently with less material.

Journal Reference: Matteo Burresi,Lorenzo Cortese,Lorenzo Pattelli,Mathias Kolle,Peter Vukusic,Diederik S. Wiersma,Ullrich Steiner& Silvia Vignolini. Bright-White Beetle Scales Optimise Multiple Scattering of Light. Scientific Reports 4, Article number: 6075 doi:10.1038/srep06075

RelatedPosts

Researchers are one step closer to saving the northern white rhino from complete extinction
White paint might be causing a lot of Type 2 diabetes, preliminary research finds
Why is snow white?
Depression in children changes the brain for life
Tags: chitinscalewhite

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Health

Our white blood cells could be ‘reprogrammed’ to lower inflammation on demand

byAlexandru Micu
5 years ago
News

Partial supernova sends a white dwarf barrelling through space

byAlexandru Micu
5 years ago
Animals

Researchers are one step closer to saving the northern white rhino from complete extinction

byAlexandru Micu
6 years ago
Matter and Energy

Why is snow white?

byAlexandru Micu
6 years ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.