ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Technology

This algorithm lets you delete water from underwater photos

Underwater photography is spectacular enough. But what if we could make it even more amazing?

Mihai AndreibyMihai Andrei
December 19, 2019
in Oceanography, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit
Image credits: Derya Akkaynak.

Underwater photography is not just for Instagram feeds — they are very important for biologists who monitor underwater ecosystem such as coral reefs. Coral reefs are some of the most colorful and vibrant environments on Earth, but like all underwater photos, photos of coral reefs tend to come out tainted by hues of blue and green. This makes it more difficult for researchers to identify species and traits of species from images, and makes monitoring considerably more difficult.

Now, there’s a solution for that: it’s called Sea-Thru.

Engineer and oceanographer Derya Akkaynak and her postdoctoral adviser, engineer Tali Treibitz, spent four years working to develop and improve an algorithm that would essentially “remove” the water from underwater photography.

The way the light is absorbed and scattered in water causes photos to be dim and overtaken by blue tones. Sea-thru removes the color cast and backscatter, leaving behind a crisp and clear image.

Image credits: Derya Akkaynak.

The method relies on taking multiple images of the same thing, from slightly different angles factoring in the physics of light absorption. Then, the algorithm produces a model of the photo, reversing the effects caused by the scattering and absorption.

“The Sea-thru method estimates backscatter using the dark pixels and their known range information,” the researchers describe the method in a working paper. “Then, it uses an estimate of the spatially varying illuminant to obtain the range-dependent attenuation coefficient. Using more than 1,100 images from two optically different water bodies, which we make available, we show that our method with the revised model outperforms those using the atmospheric model. “

The downside of this is that it requires quite a lot of images, and therefore, large datasets. Thankfully, many scientists are already capturing images this way using a process called photogrammetry (a technique that uses photographs to make certain measurements). Sea-Thru will readily work with photogrammetry images, Akkaynak says, which already raises intriguing prospects.

Results on different processing methods. Image credits: Derya Akkaynak.

This method is not akin to image manipulation — it’s not photoshopping or image manipulation. The colors are not enhanced or modified, it’s a physical correction rather than a visually pleasing modification, says Akkaynak.

RelatedPosts

Algorithm finally cuts any cake in equal, envy-free slices
Algorithm predicts the Price of Bitcoin – Developers Double Their Investment in 50 Days
A computer algorithm designed Hamburg’s new concert hall and it’s simply amazing
Squished-booms: looking at the behavior of underwater explosions

Although the algorithm was only recently announced, it’s already causing quite a stir due to its potential. Any tool that can help scientists better understand the oceans, particularly at this extremely delicate time, can’t come sooner enough.

“Sea-thru is a significant step towards opening up large underwater datasets to powerful computer vision and machine learning algorithms, and will help boost underwater research at a time when our oceans are increasing stress from pollution, overfishing, and climate change,” the researchers conclude.

Tags: algorithmimage processingsea-thruunderwater

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Diseases

Can Your Voice Reveal Diabetes? This New AI Thinks So

byMihai Andrei
7 months ago
Future

The Inventor of the World Wide Web Calls Out Social Media’s Dark Side: “This toxicity comes from the algorithms”

byTibi Puiu
9 months ago
Biology

Inconspicuous lizard can scuba dive by creating its own bubble to breathe in

byMihai Andrei
10 months ago
Geology

This underwater avalanche left a 2000 km trail of destruction in its wake

byMihai Andrei
12 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.