ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Microwave metamaterial camera images in real time. It’s only a fraction of the size current devices are

Tibi PuiubyTibi Puiu
January 18, 2013 - Updated on November 16, 2020
in Physics, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

Scientists at Duke University have devised a metamaterial that uses microwaves to image objects or scenes in real time, all through a set-up no larger than a book. Currently, the same imaging is being made with robust, huge machinery – the kind you see in airports used to scan people before they board flights – that are very expensive and contain moving parts. Applications for the new metamaterial are boundless, according to the researchers, ranging from security to self-driving cars.

A digital camera, much like the human eye as well, images by focusing light through a lens which then hits millions of individual silicon detectors, one for each pixel in the final photograph. The system works great for visible light since optical wavelengths are short and can fit in tiny spaces, like the back of the eye (retina).

Airport microwave scanner.
Airport microwave scanner.

When delving in longer wavelengths, such as microwaves or millimeter waves, things aren’t that easy since imaging currently requires detectors that are slow, expensive to construct, and require continuous reorientation to capture targets. You see, building a microwave camera that works similarly to an optical camera would require millions of detectors as well, which for microwaves however are orders of magnitude more expensive and larger. So engineers developed a single detector or a line of them and moved them from point to point across the plane you wish to capture. This works fairly well, but the resulting imaging solution is a behemoth in size, pricing and maintenance efforts.

Researchers at Duke University, however, have devised a metamaterial – a material whose properties can’t be found in nature – that seeks to replace walls and walls of materials or extremely cumbersome machinery. The device is only 40 centimeters long and consists of a single aperture that doesn’t move and which can capture a scene at various microwave frequencies. This is then fed to a computer which processes the information and retrieves an image.

Slimming down millimeter wave cameras

In broader detail, the detector consists of three plates – two copper plates with a plastic one sandwiched between – each etched with a pattern of box-like structures, 2 millimeters long that permit different lengths of microwaves to pass through. This design allows for focusing on a narrow range of frequencies in the microwave range and, ultimately, capturing an image.

It has a large aperture, which is good for resolution, but it’s thin, has no moving parts, and it made of relatively cheap materials,” John Hunt, a graduate student at Duke and corresponding author.

The Duke researchers have a fast experience in working with metamaterials. Not long ago, scientists from the prestigious university announced they had built the first working invisibility cloak.

Light doesn’t pass through walls, clothing or weather like fog – microwaves do. So you can imagine what kind of interest is invested in microwave imaging technology, especially in the field of security. The technology is employed in many other applications as well, like self-driving cars which use a smaller, yet still huge  and expensive microwave aperture that can sense obstacles in front of the vehicle.

RelatedPosts

World record wireless transmission of 100 Gbit/s achieved
Microwave harvester converts wireless energy into direct current with solar cell-like efficiency
Ultra-speed camera developed at MIT can “see” around corners
Lightweight yet mighty: 3D-printed titanium metamaterial could change engineering

“To my knowledge, this is probably the first example of metamaterials and compressive imaging in the same paper,” said Kevin Kelly, an electrical engineering professor at Rice University who helped develop the first single-pixel camera.

Hunt and his team demonstrated their work after their reconstructed the placement of various objects scattered in a room that was bombarded with microwaves. Since the metamaterial consists of a single slab, the images were cross sections of a horizontal plane through the scene, showing range only. Still, the objects were easily identified. More research will allow for developing a 2-D aperture capable of capturing 3-D images – then we’re pretty much open for business. Imagine a device in the future no bigger than a smartphone today that you can use to image through walls or clothing. It will be interesting to see how such technology will be controlled and enforced.

“This is an elegant solution to a lot of problems in microwave, millimeter-wave, and terahertz imaging,” says Eddie Jacobs, an electrical and computer engineering professor at the University of Memphis, in Tennessee

The system was reported in the journal Science.

via IEE

Tags: metamaterialmicrowavesoptics

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Physics

Rube Goldberg: The beautiful and timeless appeal of complex, useless contraptions

byTibi Puiu
10 months ago
Future

Ultra-thin night vision filter could make bulky goggles a thing of the past

byTibi Puiu
1 year ago
metamaterial
Future

Lightweight yet mighty: 3D-printed titanium metamaterial could change engineering

byJordan Strickler
1 year ago
Two different quantum optomechanical systems used to demonstrate novel dynamics in backaction-evading measurements. Left (yellow): silicon nanobeam supporting both an optical and a 5 GHz mechanical mode, operated in a helium-3 cryostat at 4 Kelvin and probed using a laser sent in an optical fibre. Right (purple): microwave superconducting circuit coupled to a 6 MHz mechanically-compliant capacitor, operated in a dilution refrigerator at 15 milli-Kelvin. (I. Shomroni, EPFL.)
Physics

Side stepping Heisenberg’s Uncertainty Principle isn’t easy

byRob Lea
6 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.