ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Inventions

Inexpensive nano-camera takes 3D pictures

Mihai AndreibyMihai Andrei
November 26, 2013 - Updated on January 6, 2014
in Inventions, News, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Using volcanoes to power liquid fuel production
Supercomputer simulation confirms Universe formation model
Polar bears after 2100? Not in “business as usual” emissions, researchers say
A reef-killing starfish’s pheromones could be harnessed to exterminate them— and help the reefs!
  • Researchers have developed a camera that can capture translucent objects in 3D
  • The camera is very cheap, at only $500
  • The camera could be used in medical imaging and collision-avoidance detectors, among others

A $500 “nano-camera” that can operate at the speed of light and take 3D pictures has been developed by researchers in the MIT Media Lab.

MIT students (left to right) Ayush Bhandari, Refael Whyte and Achuta Kadambi pose next to their "nano-camera" that can capture translucent objects, such as a glass vase, in 3-D.
MIT students (left to right) Ayush Bhandari, Refael Whyte and Achuta Kadambi pose next to their “nano-camera” that can capture translucent objects, such as a glass vase, in 3-D.

The camera, which was presented last week at Siggraph Asia in Hong Kong, could be very useful in medical imaging collision-avoidance detectors for cars, and in motion tracking and gesture recognition technology. The camera is based on “Time of Flight” technology, just like that used by Microsoft in the second-generation Kinect device. In it, the location of objects is calculated by how long it takes a light signal to reflect off a surface and return to the sensor. However, the camera is smart enough not to be tricked by rain or fog objects.

“Using the current state of the art, such as the new Kinect, you cannot capture translucent objects in 3-D,” Kadambi says. “That is because the light that bounces off the transparent object and the background smear into one pixel on the camera. Using our technique you can generate 3-D models of translucent or near-transparent objects.”

In a conventional Time of Flight camera, a light signal is fired at a scene, where it bounces off an object and returns to strike the pixel. Since you know the speed of light, it’s very easy to calculate the distance the light has traveled and therefore the depth of the object it has been reflected from. However, changing weather conditions or foggy environments all mix with the signal, causing noise and uncertainties.

Instead, the new device uses an encoding technique commonly used in the telecommunications industry to calculate the distance a signal has travelled.

“We use a new method that allows us to encode information in time,” Raskar says. “So when the data comes back, we can do calculations that are very common in the telecommunications world, to estimate different distances from the single signal.”

Basically, the new camera probes the scene with a continuous-wave signal that oscillates at nanosecond periods – which allows the team to use inexpensive technology (off-the-shelf light-emitting diodes – LEDs), which strobe at nanosecond periods.

“By solving the multipath problem, essentially just by changing the code, we are able to unmix the light paths and therefore visualize light moving across the scene,” Kadambi says. “So we are able to get similar results to the $500,000 camera, albeit of slightly lower quality, for just $500.”

What makes it even more interesting is that the team’s approach is very similar to that already being shipped in devices such as the new version of Kinect, Davis says.

“So it’s going to go from expensive to cheap thanks to video games, and that should shorten the time before people start wondering what it can be used for,” he says. “And by the time that happens, the MIT group will have a whole toolbox of methods available for people to use to realize those dreams.”

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Materials

Scientists Discover a Way to Store Data in Ice Using Only Air Bubbles

byMihai Andrei
6 hours ago
News

Elon Musk says he wants to “fix” Grok after the AI disagrees with him

byMihai Andrei
6 hours ago
a denisovan skull
Anthropology

The Face of a Ghost: 146,000-Year-Old Skull Finally Reveals What Denisovans Looked Like

byMihai Andrei
6 hours ago
Health

Outdoor physical activity is better than indoor for your brain

byMihai Andrei
7 hours ago

Recent news

Scientists Discover a Way to Store Data in Ice Using Only Air Bubbles

June 19, 2025

Elon Musk says he wants to “fix” Grok after the AI disagrees with him

June 19, 2025
a denisovan skull

The Face of a Ghost: 146,000-Year-Old Skull Finally Reveals What Denisovans Looked Like

June 19, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.