ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Geology

New earthquake models show ‘stable zones’ not so stable after all

Mihai AndreibyMihai Andrei
January 10, 2013
in Geology, Physics, Research, Studies
A A
Share on FacebookShare on TwitterSubmit to Reddit

A recent study conducted by Californian and Japanese seismologists claims that stable fault areas might not be so stable, in terms of earthquake generation. The controversial findings suggest that creeping fault behavior (more on this in the next paragraph) is actually not only instable, but also capable of creating fast slipping earthquake ruptures.

Faulty issues

fault

Faults are planar rock fractures, where the two sides move relatively one to another. Most earthquakes happen on tectonic plate boundaries, but those that don’t, typically happen on faults. When an earthquake happens, the two sides of a fault move fast, but not all the segments of the fault move the same; the general belief is that there are some (relatively) stable segments, who act as barriers against massive earthquake ruptures – these are the segments that exhibit creeping behaviour. However, this new study claims otherwise.

“What we have found, based on laboratory data about rock behavior, is that such supposedly stable segments can behave differently when an earthquake rupture penetrates into them. Instead of arresting the rupture as expected, they can actually join in and hence make earthquakes much larger than anticipated,” says Nadia Lapusta, professor of mechanical engineering and geophysics at Caltech and coauthor of the study, published January 9 in the journal Nature.

Lapusta worked with Hiroyuki Noda, a scientist at JAMSTEC (Japan Agency for Marine-Earth Science and Technology) and former postdoc at CalTech, analyzing both stresses acting on the fault and friction and the resistance of the slip – but the method they used was rather unique.

“The uniqueness of our approach is that we aim to reproduce the entire range of observed fault behaviors—earthquake nucleation, dynamic rupture, postseismic slip, interseismic deformation, patterns of large earthquakes—within the same physical model; other approaches typically focus only on some of these phenomena,” says Lapusta.

fault 3
UMERICAL SIMULATIONS ILLUSTRATE THAT FAULT SEGMENTS CAN MOVE SLOWLY AND STABLY OVER LONG PERIODS OF TIME AND LATER HOST LARGE EARTHQUAKES. DASHED LINES REPRESENT SLOW SLIP EVERY 50 YEARS ALONG A CROSS-SECTION OF THE FAULT, WITH THE NUMBERS INDICATING THE SIMULATED TIME IN YEARS. EARTHQUAKES ARE SHOWN BY SOLID LINES PLOTTED EVERY SECOND. THE AREA MARKED PATCH B CAN BOTH SLIP SLOWLY (E.G., DASHED LINES ABOVE THE 4,500 YEAR MARK) AND PARTICIPATE IN LARGE EARTHQUAKES (E.G., YELLOW EVENT). (Credits:CalTech)

In addition to creating the model, the team also assigned realistic fault properties to the model faults – using data obtained from laboratory modelling.

In that experimental work, rock materials from boreholes cutting through two different parts of the fault were studied, and their properties were found to be conceptually different,” says Lapusta. “One of them had so-called velocity-weakening friction properties, characteristic of earthquake-producing fault segments, and the other one had velocity-strengthening friction, the kind that tends to produce stable creeping behavior under tectonic loading. However, these ‘stable’ samples were found to be much more susceptible to dynamic weakening during rapid earthquake-type motions, due to shear heating.”

The results seemed pretty conclusive, raising even more concern on fault earthquakes, including extreme events – like the one which is expected to occur on the San Andreas fault, in L.A, and places which appear relatively earthquake-free.

“Creeping fault segments can turn from stable to destructive due to dynamic weakening” appears in the January 9 issue of the journal Nature.

Via Nature and JAMSTEC

RelatedPosts

Newly-discovered fault in San Andreas may explain geologic mysteries
Water flow tracks earthquake healing
Massive Indian Ocean quakes may signal tectonic break-up
Seismology could soon be used to protect elephants from poachers
Tags: faultseismology

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Earth Dynamics

Geological faults: the beauty (and science) of a key geological process

byMihai Andrei
9 months ago
News

The sounds of asteroids hitting Mars are not what you’d expect, and InSight recorded it for us

byAlexandru Micu
3 years ago
Map showing the faults and uplifting late Cenozoic basin fill (gray) of southeastern California. Image Credits: Jänecke et al. and Lithosphere.
Geology

Scientists zoom in on likely site of next San Andreas earthquake

byMihai Andrei
7 years ago
This image shows an African elephant with a visualization of the vibrations it generates, which can be used to determine its behavior. Image credits: Robbie Labanowski.
Animals

Seismology could soon be used to protect elephants from poachers

byMihai Andrei
7 years ago

Recent news

This Startup Is Using Ancient DNA to Recreate Perfumes from Extinct Flowers

May 21, 2025

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

May 21, 2025

How One Man and a Legendary Canoe Rescued the Dying Art of Polynesian Navigation

May 21, 2025 - Updated on May 22, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.