ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Discoveries

The World’s Thinnest Pasta Is Here — But It’s Not for Eating

Nanopasta might not make it to your dinner plate, but its ultrathin structure could revolutionize wound care.

Mihai AndreibyMihai Andrei
November 22, 2024
in Discoveries, Materials, Nanotechnology, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit

Researchers at University College London (UCL) have created the world’s thinnest pasta — 372 nanometers in diameter, nearly 200 times thinner than a human hair. But this isn’t your average spaghetti. Dubbed “nanopasta,” these ultrathin fibers are not meant for eating, but they could be used to make smart bandages.

Scanning Electron Microscope imagesof nanofiber mat
(a–e) Scanning Electron Microscope imagesof nanofiber mat (f) Histogram of fiber diameters with 25 nm bins with ±1 standard deviation from the mean given as colored bars.

It’s literally spaghetti

Regular pasta is made by mixing flour with water (and sometimes eggs) to form a dough. The dough is kneaded until smooth, then shaped into various forms such as long strands for spaghetti or flat sheets for lasagna. But Dr. Adam Clancy and Professor Gareth Williams had a different approach. They used a technique called electrospinning, in which you apply an electric charge to a liquid solution to pull thin threads from a needle tip, basically forming extremely thin fibers.

Although the scale is very different, the result is still spaghetti, the researchers say.

“To make spaghetti, you push a mixture of water and flour through metal holes. In our study, we did the same except we pulled our flour mixture through with an electrical charge. It’s literally spaghetti but much smaller.”

This process resulted in a mat of nanofibers (nanopasta) about 2 cm across but consisting of extremely small strands. Individual strands are so narrow that traditional optical microscopes cannot capture their structure. Instead, the team used a scanning electron microscope to confirm the astonishing thinness of the fibers.

The nanofiber mat held between two fingers. Image credits: Beatrice Britton / Adam Clancy.

To achieve the right consistency for spinning, the team heated the mixture for hours before gradually cooling it. As the solution streamed through the needle toward a metal plate, the formic acid used evaporated, leaving behind solid fibers. The process produced consistent nanofiber mats, though some defects (such as the occasional droplet formation) still appeared.

The previous record for the thinnest pasta was for handmade pasta. In the town of Nuoro, Sardinia, someone made pasta about 400 microns wide. While very thin, that’s still 1,000 times thicker than what the researchers have now achieved. In fact, the human eye can typically detect wavelengths of visible light from 380 to 700 nanometers, so this pasta is thinner than the wavelength of light that we can see.

RelatedPosts

The ‘No small matter’ giveaway
Self-healing hydrogels open a new realm of bioengineering possibilities
Humans started cooking and eating starch 120,000 years ago
The most sensitive scale in the world can measure to the yoctogram (proton’s mass)

Thin pasta can be very useful

Despite its record-breaking thinness, nanopasta won’t be showing up on dinner plates anytime soon. “I don’t think it’s useful as pasta, sadly, as it would overcook in less than a second, before you could take it out of the pan,” joked Professor Williams.

Outside of the kitchen, the nanopasta could be useful in several industries.

Image showing the scale of microscopic to nanoscopic objects showing where the  nanopasta falls
Image adapted from Wiki Commons.

Nanofibers’ high surface area and flexibility make them valuable for various applications. In medicine, they could revolutionize wound care. The porous nature of the fibers allows air and moisture to penetrate while blocking bacteria. As Professor Williams noted, nanofibers also mimic the extracellular matrix, enabling their use as scaffolds for regrowing tissue and bone.

“Nanofibers, such as those made of starch, show potential for use in wound dressings as they are very porous. In addition, nanofibers are being explored for use as a scaffold to regrow tissue, as they mimic the extra-cellular matrix — a network of proteins and other molecules that cells build to support themselves,” Williams added.

Beyond healthcare, nanofibers can improve filtration systems, create biodegradable packaging, and even serve as components in energy storage devices like supercapacitors. The UCL team’s success in producing nanofibers from flour offers a cheaper, greener alternative to traditional nanofiber materials, potentially accelerating adoption across multiple sectors.

Sustainable and scalable

When we think of wonder materials, we’d probably consider complex alloys or futuristic structures — but flour can be pretty spectacular itself.

Starch nanofibers already exist, but they rely on pure starch extracted through energy- and water-intensive processes. By using white flour instead, the UCL team bypassed these steps, significantly reducing environmental impact. Flour is a more accessible and sustainable starting material since it retains starch along with proteins and cellulose, which are not harmful to many applications.

However, unlike purified starch, flour may have some impurities that slightly complicate the process (but don’t necessarily undermine the final product’s quality).

To address this, the researchers dissolved the flour in formic acid, which breaks down starch’s tightly bound helical structures into smaller chains suitable for spinning.

“Starch is a promising material to use as it is abundant and renewable — it is the second largest source of biomass on Earth, behind cellulose — and it is biodegradable, meaning it can be broken down in the body,” said Clancy. “But purifying starch requires lots of processing. We’ve shown that a simpler way to make nanofibers using flour is possible.

While the initial results are promising, further research is necessary to explore the properties of these flour-based nanofibers. The team plans to investigate their biodegradability, interaction with cells, and scalability for industrial production.

“The next step would be to investigate the properties of this product. We would want to know, for instance, how quickly it disintegrates, how it interacts with cells, and if you could produce it at scale.”

The study was published in Nanoscale Advances.

Tags: biodegradable materialsbiotechnologyelectrospinningnanofibersnanotechnologyrenewable resourcessmart bandagesstarchsustainable materialsUniversity College London

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

World’s Smallest Violin Is No Joke — It’s a Tiny Window Into the Future of Nanotechnology

byTibi Puiu
2 days ago
Future

Researchers create contact lenses that let you see in the dark, even with your eyes closed

byMihai Andrei
3 weeks ago
Chemistry

Want to make the perfect pasta? Physics finally has the answer

byAlexandra Gerea
1 month ago
Biology

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

byMihai Andrei
1 month ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.