ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

Who needs a doctor? Smart bandage monitors wounds in real-time

The device monitors wounds and promotes healing all at the same time.

Tibi PuiubyTibi Puiu
November 29, 2022
in Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Drawing of wireless smart bandage on human arm. Credit: Jian-Cheng Lai, Bao Research Group.

The bandage is perhaps one of the first and most basic medical tools humans have invented. For thousands of years, people have been using strips of cloth on wounds to stop bleeding and dress wounds — but that doesn’t mean that the way we make and use bandages hasn’t changed. In fact, it’s changed quite a lot.

The ancient Egyptians cleverly used honey as both an adhesive and a natural antibiotic. Hippocrates, the noted Greek physician whose name is directly tied to the Hippocratic Oath, was known to treat ulcers with wine and cover them with fig leaves. Fast forward to the 20th century, Johnson & Johnson employee Earle Dickson invented the now ubiquitous Band-Aid.

But what about the bandage of the 21st century? I think you already have an idea of what it looks like: strap a boatload of sensors and electronics, and now it’s a ‘smart’ bandage!

From rough linen to high-tech sensors

Photographs of the smart bandage showing the microcontroller unit (MCU), crystal oscillator, high-pass filter (HPF), stimulation and sensing electrodes, flexibility of the printed circuit board, adhesion of the hydrogel interface to skin, and thin layout of the board. Credit: Jian-Cheng Lai, Bao Research Group.

These high-tech bandages are typically designed to do one of two things: either gather data about the state of a wound or help heal the wound. But the smart bandage developed by a team led by Yuanwen Jiang, a chemical engineer at Stanford University, does both.

The battery-free, flexible device can monitor wounds in real-time, while also delivering treatment and significantly reducing scar tissue formation. For instance, it could be strapped to the site of chronic injuries, such as on the painful leg of a diabetic or on foot ulcers that can last for months. These sorts of chronic wounds that don’t heal can easily ruin a patient’s quality of life, causing anxiety and depression, as well as costing healthcare systems across the world more than $25 billion each year.

In order to monitor wound healing, the device uses impedance and temperature sensors that are embedded inside wireless circuitry. If the device senses that the wound is healing poorly or, worse, has become infected, the central processing unit will direct more electrical stimulation across the wound bend to accelerate tissue closure and reduce infection. If the electrical impedance increases and the local temperature declines that means inflammation is subsiding and the wound is actually healing. All the data from the sensors can be tracked wirelessly in real-time using a smartphone app.

Remarkably, all the electronics, including the sensors, radio antenna, microcontroller unit, memory, and all the other components, fit inside a single, flexible electrical layer that is only 100 microns thick. That’s about as thick as a single coat of latex paint.

RelatedPosts

Prescription painkillers cause 67.8% of opioid overdoses. Heroin a distant second at 16.1%
Eight messed-up ‘delicacies’ you probably never want to touch
Good fathers’ testosterone level drops when expecting a baby
These lensless, glow in the dark glasses could stop myopia

Smart materials, smart sensing

On top of the active electrical layer lies a custom-made hydrogel, which is a skin-like polymer that delivers healing electrical stimulation and facilitates data collection from the sensors. The hydrogel is engineered to have an adhesive surface that is tight enough to securely attach itself to the wound surface, but loose enough so that the patient or doctor may cleanly and gently pull away the bandage without harming the wound when warmed to only 40°C (104°F).

“In sealing the wound, the smart bandage protects as it heals,” says Yuanwen Jiang, co-first author of the study and a postdoc at the Stanford School of Engineering. “But it is not a passive tool. It is an active healing device that could transform the standard of care in the treatment of chronic wounds.”

To speed up the healing process, the bandage electrically stimulates the site of the wound. Previous research found that electrical stimulation limits bacterial infection, prevents the development of biofilms, helps with tissue repair, and proactively promotes new tissue growth. While they were testing their electronic bandage, the Stanford researchers also found evidence that electrical stimulation seems to promote the expression of certain pro-regenerative genes, such as Selenop (an anti-inflammatory gene) and Apoe (a gene that promotes muscle growth and repair).

That’s not all. Electrical stimulation also increases the production of white blood cells, particularly monocytes and macrophages — immune cells play a key role in closing wounds and proliferating the active phase of wound healing.

For now, this particular iteration is only a proof of concept. The researchers need to figure out how to reduce costs and solve some long-term data storage issues, and they’re also looking at ways to improve it. For instance, new sensors could be added that measure other important indicators, such as metabolites, biomarkers, and acidity.

But the technology could be coming sooner rather than later. Coupled with a machine learning algorithm, all of this massive stream of data could be turned into actionable diagnostics that are more accurate and quicker.

Conventional bandages will still have their time and place. After all, why ruin a classic if it’s not broken? But it’s great to see bandage technology reach the next level.

The findings were reported in the journal Nature Biotechnology.

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Environment

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

byMihai Andrei
1 day ago
Health

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

byMihai Andrei
1 day ago
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
2 days ago
News

Drone fishing is already a thing. It’s also already a problem

byMihai Andrei
2 days ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.