ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

You won’t believe these three unexpected discoveries – and neither did the scientists who made them

Researchers at one of the UK’s leading genetics centres tell us about their serendipitous findings.

Contributing AuthorbyContributing Author
September 13, 2018
in Biology, Health
A A
Share on FacebookShare on TwitterSubmit to Reddit

Science, mostly, progresses iteratively. But every now and then, a discovery will be made – often incidental to the main aim of the research – that is entirely unexpected. Such serendipitous findings enable us to leapfrog our usual incremental advances. They can even disrupt a whole field of research.

In 2003, the Human Genome Project, the 13-year-long international effort to fully sequence human DNA and identify all our genes, was completed. The Wellcome Sanger Institute, near Cambridge, England, was the only British organisation involved, completing the sequence of one-third of the genome.

While many of the great proclamations made at the launch of the project have yet to be realised, there is no doubt that sequencing the human genome was a technological game-changer for science in the way that, say, the invention of the printing press and microscopes were in previous centuries. And, just as for other disrupting technologies, genome sequencing has led to some wholly unexpected findings.

§

1. Chromosome shattering can cause cancer

Credit: Camilo Medina for Mosaic.
Credit: Camilo Medina for Mosaic.

Cancer is a genetic disease. Through replication errors and mutations in DNA, healthy cells form tumours that can kill us. Today, researchers are sequencing the genomes of many tumours and through this transforming our understanding of what exactly cancer is.

Peter Campbell, who heads Sanger’s cancer programme, has made a few unexpected discoveries in his work with kidney tumours, but the most remarkable was an entirely new cancer-triggering mechanism.

He and his colleagues found that a chromosome can explode for unknown reasons, shattering into hundreds of pieces.

RelatedPosts

The flood-tolerant crops of the future
Research identifies a gene that makes our brains (and those of primates) unique
3D structure of humans finally decoded
Humans and chimp brains may have a turbo-charged fight-or-flight response

It was such a surprising finding that Campbell assumed it was because of a problem with the data. “Almost all of these things turn out to be rubbish in the data – someone’s mucked something up somewhere along the line. So usually it starts with us saying: we need to figure out what’s gone wrong,” he says. However, no obvious error could be found.

“The advantage of working with genetic data is it’s black and white, it behaves in a digital way – unlike, say, cells, which can look different on different days.”

Once he’d confirmed the discovery, Campbell allowed himself to get excited. Science, he notes, is usually a very long-term project: “You can be banging your head against problems that you can’t solve for weeks on end… then unexpected findings drop out all of a sudden.”

Campbell prepared himself for a backlash from the field. In the end, though, his research paper was received very positively, and others have since confirmed his findings, capturing the changes occurring in cells grown in the laboratory. The mechanism is likely to trigger many different cancers, researchers believe.

So has the finding shifted people’s thinking? “Yeah, I think so,” says Peter. “The best papers do that, but they come along not so often in one’s own career. We were lucky that we had very early access to the modern genetic technologies that allowed us to spot these patterns before others did.”

§

2. The Y chromosome is not useless after all

Credit: Camilo Medina for Mosaic.
Credit: Camilo Medina for Mosaic.

Haematologist George Vassiliou and his team were looking for new targets for drugs to treat leukaemia. One such target was a cancer-suppressing gene called UTX, which sits on the X chromosome.

As part of their investigations, they were using mice with faulty versions of the UTX gene to see when they got cancer. During these experiments, Vassiliou also tweaked a similar non-functional gene on the Y chromosome called UTY.

Aside from the gene that determines sex, Y chromosome genes were largely thought to be non-functional leftovers. In fact, the mole vole has evolved to lose its Y chromosome altogether.

Researchers have suggested that the same could happen in humans eventually. That was until Vassiliou’s team discovered that the UTY gene is functional in humans. What’s more, they found that it plays a significant role in suppressing cancer.

“It was very exciting,” he says. “At first, we were so happy to find another potential target for leukaemia treatment.”

But then there was a moment of realisation: “The Y chromosome actually does something! It is not useless after all.”

§

3. Bacterial genes we thought might not do anything actually affect how well vaccines work

Credit: Camilo Medina for Mosaic.
Credit: Camilo Medina for Mosaic.

Jukka Corander, a biostatistician at the Sanger Institute and University of Oslo, and Nicholas Croucher, a bacterial geneticist at Imperial College London, were exploring the genomics of bacterial infections. They used computer simulations of multiple strains to figure out what causes bacterial populations to change in unexpected ways after vaccination against them.

They were comparing the genomes of Streptococcus pneumoniae, a bacterium that causes severe illnesses such as pneumonia, sepsis and meningitis. This involved collections of bacteria from four different human populations around the world, three of which had been vaccinated against the bacterium.

All Streptococcus pneumoniae strains have around 2,000 genes. Three-quarters of these genes are very similar across strains. The remaining ‘accessory genes’ vary considerably between them. Bacterial strains can swap any gene through a process called horizontal gene transfer.

The modelling showed that the levels of accessory genes were very similar in the bacterial population before and after vaccination, even though the types of strain present had changed dramatically.

In other words, the strains that emerged after vaccination had similar sets of accessory genes to the strains eliminated by vaccination. So – far from being useless – accessory genes appear to play a role in how the bacterial population responds to a vaccine.

Importantly, some of the accessory genes that returned to their previous levels are involved in resistance to antibiotics.

“We had just published a paper that agreed with the ‘neutral model’ of the accessory genes,” Corander says, “so I was utterly astonished.”

This work provides the foundation for further research that will help predict which strains will spread most rapidly after a change to how we treat bacterial diseases.

“Without having access to high-definition genomes, we would never have seen this,” Corander says. “We wouldn’t even have known that so much variation exists in the genomes, let alone this important role of these rare accessory genes.”

Wellcome, the publisher of Mosaic, founded the Wellcome Sanger Institute in 1993 and has funded it ever since. The Sanger Institute celebrates its 25th anniversary in October 2018.

Nicholas Croucher holds a Sir Henry Dale Fellowship, which is funded by Wellcome and the Royal Society. Peter Campbell receives funding from Wellcome through a Senior Research Fellowship in Clinical Science.

This article was written by Gaia Vince and first appeared on Mosaic and is republished here under a Creative Commons licence.

Tags: chromosomegenetics

ShareTweetShare
Contributing Author

Contributing Author

This article was authored by one of our readers or friends.

Related Posts

Genetics

Artificial selection — when humans take what they want genetically

byShiella Olimpos
3 months ago
Archaeology

Cats Came Bearing Gods: Religion and Trade Shaped the Rise of the Domestic Cat in Europe

byMihai Andrei
4 months ago
Animals

Some 31 million years ago, these iguanas rafted over 5,000 miles of ocean

byTudor Tarita
5 months ago
Black Labrador is eating --ar 3:2 --style raw --stylize 300 Job ID: 8e6ba549-053a-4008-b029-8651ce4f44db
Animals

This Gene Explains Why Your Labrador Is Always Hungry — And Why Some Humans Struggle with Obesity

byTibi Puiu
5 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.