ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

This protein explains why you get acne — and may offer a new way to cure it

Scientists now have a more actionable target for the treatment of acne.

Tibi PuiubyTibi Puiu
October 20, 2020
in Biology, Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: Pixabay.

The lack of expression of a certain protein in the skin is associated with acne, according to a new study published today in Nature Communications. According to the authors, new treatments that promote the growth of this newly significant protein could be developed as a result of the research.

New insights into acne reveal potential treatment targets

Acne is arguably the most common skin condition in the world, affecting at any time about 650 million people. The skin disease typically occurs when oil glands become clogged, forming spots, pimples, and sometimes cysts. However, there are still many unknowns about acne formation.

“Although acne is one of the most common dermatological conditions, its pathogenesis remains incompletely understood,” Dr. Christina Philippeos, Research Associate in the Centre for Stem Cells & Regenerative Medicine at King’s College London, told ZME Science.

To learn more about acne, Philippeos and colleagues investigated whether GATA6 (GATA-binding protein 6), a protein expressed in the hair follicle, might be involved in any way. There were some hints that it is.

Previously, another group showed that when this protein is switched off in epidermal cells that line the pilosebaceous unit (a structure that consists of the hair follicle and sebaceous glands), lesions would form filled with acne-like material.

To learn more, the researchers examined skin biopsies from five healthy volunteers and nine patients with different degrees of acne severity. Upon examination, they found that healthy people had high levels of GATA6 while acne cases had reduced GATA6 levels.

Back in the lab, the researchers developed a human sebaceous organoid model that ultimately showed that GATA6 is involved in several physiological processes that regulate the upper pilosebaceous unit (PSU). One such process has to do with the production and differentiation of keratinocytes, which are the primary, most common cells found in the outermost layer of the skin.

“Acne is a disease specific to humans and no animal model recapitulates its pathological features fully. Therefore, acne research has relied heavily on translational histopathological studies and cell-based studies. It can be quite a challenge to show that the findings seen in vitro are representative of the disease in humans. Moreover, accessing histological samples of acne skin is difficult, as this requires patient biopsies, usually performed on the face. Nevertheless, we really enjoyed the technical challenge of creating small sebaceous 3D organoids and isolating hair follicles from fresh human skin (obtained from plastic surgery waste) to create in vitro mini-organ cultures to silence GATA6 in these PSUs,” Philippeos told ZME Science.

What’s more, GATA6 modulates immunological signals that contribute to the inflammatory pathways seen in acne and may also prevent the formation of clogged pores.

RelatedPosts

Microbots no larger than a human cell set to carry more payload drugs
After millions of tests, researchers find the most promising compounds against malaria
A type 2 diabetes drug might treat Alzheimer’s
The worst of multiple sclerosis can be avoided or delayed with early treatment

But perhaps most importantly, the researchers found that the expression of GATA6 was induced by retinoic acid, a product that is used in some acne treatments.

“Our study shows that isotretinoin partially works through GATA6 induction. Therefore, there is already a GATA6 based treatment! But our study is still in the discovery science phase. GATA6 has never been implicated in acne pathogenesis before. Further research is needed to identify which compounds may specifically stimulate GATA6 expression in acne patients, before treatment may go to trial,” Philippeos said.

In the future, the researchers plan on doing more research into the role of GATA6 in the human skin. Meanwhile, Philippeos recommends systemic isotretinoin to treat acne, which she refers to as the “current gold standard treatment” but which also has multiple side effects.

“This study shows the public that the development of acne is a complex, multifactorial process. It is still not fully understood, but this finding sheds more light on these processes, which could open up new avenues for the research and treatment of this disease,” she concludes.

Tags: acnetreatment

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

The Future of Acne Scar Treatment: How Exosomes and Fractional CO2 Lasers are Changing the Game

byAlexandra Gerea
6 months ago
Health

There are actually 6 types of depression and anxiety. Each should be treated differently

byTibi Puiu
12 months ago
Health

New lung cancer drug results are so good it’s “off the charts”

byMihai Andrei
1 year ago
Mind & Brain

Suicidal thoughts and depression show up in blood markers. This is big for mental health care

byMihai Andrei
1 year ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.