ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

Semen regulates female’s gene expression and behavior (curbs depression, for instance)

There's more to seminal fluid, which makes up to 70% of semen's composition, than procreation. Scientists are only recently beginning to understand how the seminal fluid is interacting with the female brain and body, and findings so far may be surprising for some. For instance, in animals - including humans - semen affects the female reproductive tract, to maximize the changes of conception. But it doesn't stop here. The influence of semen on females might go even beyond this. In experiments on fruit flies, scientists found the females had altered gene expression post semen exposure, while males produce more seminal proteins when there are more rivals. Suddenly, semen just got a heck of a lot more complicated.

Tibi PuiubyTibi Puiu
August 3, 2015
in Health
A A
Share on FacebookShare on TwitterSubmit to Reddit
Image: Healthtap
Image: Healthtap

There’s more to seminal fluid, which makes up to 70% of semen’s composition, than procreation. Scientists are only recently beginning to understand how the seminal fluid is interacting with the female brain and body, and findings so far may be surprising for some. For instance, in animals – including humans – semen affects the female reproductive tract, to maximize the chances of conception. But it doesn’t stop here. The influence of semen on females might go even beyond this. In experiments on fruit flies, scientists found the females had altered gene expression post semen exposure, while males produce more seminal proteins when there are more rivals. Suddenly, semen just got a heck of a lot more complicated.

When you think about it, though, it makes sense for semen to be complicated, considering its role in reproduction. After all, physiological responses are often interconnected.  It’s all about maximising the chances of the male reproducing,” says Sarah Robertson of the University of Adelaide in Australia.

The most important finding reported at the Society for Molecular Biology and Evolution conference in Vienna was that one of the seminal proteins was a sort of “master regulator” of genes, as the female fruit flies showed a wide range of changes in gene expression.

The seminal fluid can also make the females eat more, lay more eggs and be less receptive to other males. The real question, though, is whether the same applies to humans as well. It might very well happen, considering semen protein signaling is so wide-spread in the animal kingdom.

Some claim semen makes women sleepy. But the most interesting finding might be that semen exposure helps curb depression. A study from 2002 found after surveying 300 students that women whose partners did not use condoms scored lower on a measure of depression. If this is genuinely true, then the next anti-depressants might be based on semen. Imagine that.

But how does that happen? How would semen alter brain chemistry? Well, in fruit flies at least, semen proteins enter the circulatory system and end up in the brain. In humans, this is less likely. Instead, the signaling molecules might elicit a response in the uterus which in turns causes a physical response that’s later transferred to the brain. Whatever’s the case, it’s amazing to hear that something so often disregarded as semen can have widespread physiological responses.

via New Scientist

RelatedPosts

Semen is a great antidepressant
Tags: semen

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Studies

Semen is a great antidepressant

byMihai Andrei
14 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.