ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

A lab experiment shows that we could engineer malaria-carrying mosquitoes to kill themselves off

Not the kindest thing to do, probably, but it's still a cool idea.

Alexandru MicubyAlexandru Micu
July 28, 2021
in Health, News, Science, World Problems
A A
Share on FacebookShare on TwitterSubmit to Reddit

A new paper showcases how genetic engineering can be used to cause populations of malaria-spreading mosquitoes to self-destroy.

Image credits Egor Kamelev.

An international research effort has shown, in the context of a lab experiment, that male mosquitoes engineered to carry a certain strand of DNA can rapidly destroy entire groups of these blood-sucking insects. The main importance of this experiment is that it showcases that gene-drive technology can be used even in harsh environmental conditions, such as those in sub-Saharan Africa.

This “gene drive” sequence is essentially a damaging mutation that could prove to be a powerful tool against the carriers of malaria.

Drastic measures

“Our study is the first [that] could show that gene-drive technology works under ecologically challenging conditions,” says Ruth Muller, an entomologist who led the research at PoloGGB, a high-security lab in Terni, Italy. “This is the big breakthrough that we made with our study.”

While this experiment has been a success, that doesn’t mean it’s going to be used any time soon. For that to happen, the authors first need to prove that their edited mosquitoes can work in practice — i.e. that they’re safe to release into the wild. Not only that but local governments and residents will have to give their approval before any of the mosquitoes can be released.

Still, with that being said, malaria remains one of the most concerning diseases on Earth. It infects an estimated 200 million people every year, with an estimated annual death toll of around 400,000. This is despite decades of coordinated effort to contain it.

So the authors decided to use the CRISPR gene-editing technique to make mosquitoes, the carriers of the malaria parasite, to self-destroy. They worked with the Anopheles gambiae species, which is native to sub-Saharan Africa. The gene they modified is known as “doublesex”, and is normally carried by healthy females. The modified variant, however, deforms their mouths and reproductive organs, meaning they can’t bite (and thus spread the parasite) nor lay eggs. This is combined with a gene drive, “effectively a selfish type of genetic element that spreads itself in the mosquito population,” says Tony Nolan of the Liverpool School of Tropical Medicine, who helped develop and test the mosquitoes.

Due to the risks involved in releasing these insects into real ecosystems, the experiments were carried out in small cages in a high-security basement lab in London. The modified mosquitoes showed that they can destroy populations of the unmodified insects here.

RelatedPosts

Dengue vaccine candidate looks promising in Phase 3 Trial
Swedish scientists plan to edit the genes of healthy human embryos, treading on thin ice
Oldest mosquito fossil shows males were once bloodsuckers too
We’re entering a new age of genetic editing, as flurry of CRISPR trials already gear up

In order to test them under more natural conditions, however, the team also built a special high-security lab in Italy, specifically designed to keep the mosquitoes in. Here, dozens of gene-edited mosquitoes were released into very large cages containing hundreds of natural mosquitoes. Temperature, humidity, and the timing of sunrise and sunset mimicked the environment in sub-Saharan Africa. In less than a year, the authors report, the population of un-altered mosquitoes was all but wiped out.

Both of these steps were carried out far from the insects’ natural range as extra insurance in case any of them got out.

Whether such an approach will ever actually be used in real-life settings is still a matter of much debate. Even so, the study showcases one possible approach and strongly suggests that it would also function in the wild. It’s also a testament to how far gene-editing technology has come, that we could potentially have one of the most threatening (to us) species right now effectively destroy itself.

The paper “Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field” has been published in the journal Nature Communications.

Tags: CRISPRmalariamosquito

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Science

The scientific reason behind the weight loss yo-yo effect: your body has a ‘fat memory’

byMihai Andrei
3 months ago
Biology

Scientists Create Mice with Two Fathers in a Genetic Breakthrough That Could Save Endangered Species

byTibi Puiu
4 months ago
Diseases

Mysterious “Disease X” identified as aggressive strain of malaria

byMihai Andrei
5 months ago
Animals

Oh, Great! Scientists Discover Mosquitoes Use Infrared Vision to Hunt Humans

byTibi Puiu
9 months ago

Recent news

This Superbug Learned How to Feed on Plastic from Hospitals

May 20, 2025

China’s Tiangong space station has some bacteria that are unknown to science

May 20, 2025

Hidden Communication Devices Found in Chinese-Made Inverters Could Put U.S. Electrical Grid at Risk

May 20, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.