ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health

Physicists capture sneezing in slowmo, and this is actually important

Bless you!

Tibi PuiubyTibi Puiu
August 25, 2016
in Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
slomo sneeze
Credit: Lydia Bourouiba

Lydia Bourouiba studies fluid dynamics at MIT and she says the seemingly simple act of sneezing has one of the most complex fluid physics. Aided by colleagues at her lab, Bourouiba used high-speed cameras to film volunteers while they sneeze. The results are mesmerizing shots of bodily fluids dancing in the air. Gross or art? That’s beside the point because slow mo sneezing might actually save some lives.

Bless you!

Besides being able to detect odors, the sensors that line the insides of the nose are very good at detecting foreign particles that might cause us harm. When these sensors detect irritant particles, they instruct the hair-like paddles that line the sinuses called cilia to move and expel the objects. A 2012 study published in FASEB Journal found that the burst of air produced by a sneeze not only clears nasal passages but also triggers the cilia sensors to kick the paddles into high gear for an extended period. What they say, essentially, is that a sneeze acts like a sort of reset button for the sinuses.

While sneezing is great to keep irritants such as germs, dust, pollen, animal dander, or pollutants from reaching the lungs and other vital organs, the expulsion also puts other people at risk. Respiratory diseases, for instance, often move from person to person transported by germs expelled through sneezing. If we can understand how a sneeze cloud moves, then we can be better prepared to contain risks, or at least that’s the thinking behind Bourouiba’s research.

“There’s a whole range of droplet sizes in this cloud, and the cloud is made of hot and moist air,” Bourouiba told NPR. “And it’s turbulent, so that means that it has swirls and eddies, and it’s moving very fast.”

One of the most revealing findings was that tiny droplets in a sneeze can travel through a whole room, in some conditions, in only a couple of seconds. The droplets can also remain suspended in the air for many minutes, the scientists reported in the New England Journal of Medicine.

“The largest droplets rapidly settle within 1 to 2 m away from the person. The smaller and evaporating droplets are trapped in the turbulent puff cloud, remain suspended, and, over the course of seconds to a few minutes, can travel the dimensions of a room and land up to 6 to 8 m away,” the researchers wrote.

So far, the volunteers Bourouiba has worked with were all healthy. The next step in her research is to enlist participants who are down with the flu and have them sneeze in controlled, hospital-like rooms.

The ultimate goal is to understand the physics of sneezing very well. This knowledge, coupled with germ theory and how respiratory diseases get transmitted between hosts, will enable scientists to design hospital rooms with just the right amount of moisture, ventilation, temperature and space so that risks are kept to a minimum.

And if you’ve ever wondered what’s the best way to keep your cold-ridden sneezes from infecting innocent bystanders, Bourouiba says the most effective technique is to sneeze on your elbow, not in your hand or fist. She says the elbow is the most effective part of the body in reducing a sneeze cloud’s momentum.

RelatedPosts

The ‘five seconds rule’ has been debunked
What is antibiotic resistance: everything you need to know
Sea sponges ‘sneeze’ out their undigested food in this weird but fascinating video
Man sneezes so hard his guts come out. Baffled doctors manage to save him
Tags: coughgermssneeze

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

This Man Tried to Stifle a Sneeze and Tore a Hole in His Throat

byTudor Tarita
3 weeks ago
2009.Brian Judd..This 2009 photograph captured a sneeze in progress, revealing the plume of salivary droplets as they are expelled in a large cone-shaped array from this man’s open mouth, thereby, dramatically illustrating the reason one needs to cover hios/her mouth when coughing, or sneezing, in order to protect others from germ exposure...How Germs SpreadIllnesses like the flu (influenza) and colds are caused by viruses that infect the nose, throat, and lungs. The flu and colds usually spread from person to person when an infected person coughs or sneezes.How to Help Stop the Spread of GermsTake care to: - Cover your mouth and nose when you sneeze or cough -  Clean your hands often - Avoid touching your eyes, nose or mouth -  Stay home when you are sick and check with a health care provider when needed - Practice other good health habits.
Health

Man sneezes so hard his guts come out. Baffled doctors manage to save him

byTibi Puiu
11 months ago
Animals

Sea sponges ‘sneeze’ out their undigested food in this weird but fascinating video

byAlexandru Micu
3 years ago
Environment

Sanitizing homes gets rids of bacteria but makes room for fungi

byTibi Puiu
6 years ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.