ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Paralyzed man Walks again after Nose Cells Transplant into the Spinal Chord

Tibi PuiubyTibi Puiu
October 21, 2014
in Biology, Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Regeneration of the spinal chord following a paralyzing injury was thought to be impossible, but groundbreaking efforts stirred by surgeons in Poland and Britain have turned this paradigm upside down. A team of dedicated surgeons and scientists transplanted  cells from the nasal cavity of a patient who had been paralyzed from the waist down for more than two years into his spinal chord. Today, a few years later following the procedure, the patient is able to walk with the use of a frame, an unthinkable prospect not too long ago. Though the researchers themselves are reserved (the procedure needs to be repeated on more similar cases), results so far are most promising.

Regenerating the spinal chord using nose cells

nose_cell
Ensheathing cells (OECs) were recovered from the patient’s olfactory bulb, grown in a petri dish, then inserted to the severed spinal chord. Image: BBC

Darek Fidyka, 40, became paralyzed after being repeatedly stabbed in the back in 2010. Despite many months of intensive care, Darek showed little signs of recovery. Luckily, he got involved with this experimental project which changed his life forever.

“I think it’s realistic that one day I will become independent,” Fidyka says.

“What I have learned is that you must never give up but keep fighting, because some door will open in life.”

So, why cells from the nose? We’ve written in the past about how incredible the biological system that enables smell is, and it’s only recently that we’re beginning to uncover its secrets. Each time we inhale a breath of fresh air, molecules that represent different odors come in contact with nerve cells lined throughout the nose. These transmit messages to our olfactory bulbs – at the very top of the nasal cavity, sitting at the base of the brain. Because of continued stress, these cells are regularly damaged and must be replaced. This process of regeneration is made possible by olfactory ensheathing cells (OECs), which provide a pathway for the fibres to grow back. The complex neural circuitry responsible for our sense of smell is the only part of the nervous system that regenerates throughout adult life, and scientists have been trying for a long while to exploit this mechanism.

[ALSO SEE] White smell – the neutral fragrance discovered by scientists

A novel surgery

Captioned above, Mr Fidyka (40), who undergoes five hours of physical therapy each day. Photo: BBC
Captioned above, Mr Fidyka (40), who undergoes five hours of physical therapy each day. Photo: BBC

The first proven signs that this sort of idea might actually work came in 2012, when ZME Science reported how Cambridge researchers restored movement in the hind legs of 23 dogs after they transplanted nerve cells from the animals’ noses.

In the first part of the delicate procedure described in Cell Transplantation, doctors first removed one of the patient’s olfactory bulbs and grew the cells in culture. Two weeks later the culture grew to house some 500,000 cells, which were transplanted  into the spinal cord via some 100 micro-injection directed above and below the site of injury.  Four strips of nerve tissue were placed across an 8mm gap in the spinal cord.

The first signs of improvement showed three months later, when the patient noticed increased muscle mass in his left thigh. Throughout this time and later, Fidyka continued his normal physical rehabilitation program – five hours per day, five days a week. Six months later, the patient made his first steps  along parallel bars, using leg braces and the support of a physiotherapist. Two years later, Fidyka can now walk by himself outside the rehabilitation center with the support of a frame. The patient has also regained, in part, bladder, bowel and sexual function.

RelatedPosts

Fungus-derived molecule enables axon regrowth — potentially treating brain and spinal chord injuries
Paralyzed woman flies fighter jet with nothing but her thoughts
These spinal cord implants allow paralyzed patients to stand, walk, and even swim and cycle
‘Brain training’ assisted by VR and an exoskeleton helps paraplegics regain control of limbs

Dr Pawel Tabakow, consultant neurosurgeon at Wroclaw University Hospital, who led the Polish research team, said: “It’s amazing to see how regeneration of the spinal cord, something that was thought impossible for many years, is becoming a reality.”

The scientists believe the OECs act as a pathway that direct nerve cells in the spinal chord to regenerate, while the nerve grafts acts like a neural bridge connecting the severed chord. Most of the repair of Mr Fidyka’s spinal cord was done on the left side, where there was an 8mm gap, which serves to explain why his left thigh was more pronounced and recovered quicker.

No less a major medical breakthrough, the procedure might be widely applied to help some of 3 million paralyzed all over the world walk on their own two legs again. The team is cautious, however. Depending on funding, they hope to repeat the procedure on ten more patients from Poland and the UK. If similar results can be reported, a new age of medicine might dawn upon us.

 

Tags: nose cellsparalyzedspinal chord

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Could electrical stimulation and robot-assisted exercise reverse paralysis? New results are a resounding ‘yes!’

byAlexandru Micu
3 years ago
Future

These spinal cord implants allow paralyzed patients to stand, walk, and even swim and cycle

byTibi Puiu
3 years ago
Fluorescent bundles of axons.
Image credits Minyoung Choi / Wikipedia.
Biology

Fungus-derived molecule enables axon regrowth — potentially treating brain and spinal chord injuries

byAlexandru Micu
8 years ago
One of the patients part of the "Walk Again Project" straps a VR headset and EEG cap. This therapy helped many of the patients regain part of their senses, although they used to be completely paralyzed.
Health

‘Brain training’ assisted by VR and an exoskeleton helps paraplegics regain control of limbs

byTibi Puiu
9 years ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.