ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Nanoparticles gain the upper hand on antibiotic resistance, kill 92% bacteria

Scientists are experimenting with a novel mechanism that destroys harmful bacteria that uses light-activated nanoparticles. These are called quantum dots and are typically used by the semi-conductor industry, in solar cells and other applications. When specifically tweaked in size and composition, these tiny particles interact with cells and kill over 90% of bacteria.

Tibi PuiubyTibi Puiu
January 19, 2016 - Updated on November 16, 2020
in Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Scientists are experimenting with a novel mechanism that destroys harmful bacteria that uses light-activated nanoparticles. These are called quantum dots and are typically used by the semi-conductor industry, in solar cells and other applications. When specifically tweaked in size and composition, these tiny particles interact with cells and kill over 90% of bacteria.

bacteria
Credit: pixabay

Antibiotics are a godsend to medicine. Without exaggeration, millions have been spared of death at the hand of bacterial infections since Alexander Fleming first identified penicillin in 1928. Through widespread use and, most recently, excessive cleanliness many bacterial species have evolved a resistance to antibiotics. Superbug infections, including multi-drug-resistant forms of TB already kill hundreds of thousands every year, and the number will only increase as time passes. If a dangerous threshold is reached, the world might be in for a global pandemic. Antibiotic resistance is without a doubt one of the biggest challenges society faces this century.

The scientific community is well aware of the dangers of antibiotic resistance and in the last couple of years some promising breakthroughs were reported. Last year, a group discovered the first new class of antibiotics in 30 years that kills germs by blocking their capacity to build their cell walls. Other groups have followed more unconventional routes.

Metal nanoparticles is an intriguing line of research against bacteria. The problem is that these indiscriminately attack cells, bacteria and our own human cells alike. That doesn’t sound too promising. But researchers at University of Boulder, Colorado have found a great workaround: use quantum dots 20,000 times smaller than the human hair that kill bacteria, and bacteria only, when excited by light.

Tests made on known antibiotic resistant strain like Staphylococcus aureu, Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium proved highly effective. In some instances, the quantum dots were tailored to kill 92% of the bacterial cells in a monoculture, while leaving the mammalian cells intact, the scientists reported in Nature Materials.

“Antibiotics are not just a baseline treatment for bacterial infections, but HIV and cancer as well,” said one of the researchers, Anushree Chatterjee. “Failure to develop effective treatments for drug-resistant strains is not an option, and that’s what this technology moves closer to solving.”

Of course, the quantum dots therapy needs to be extensively studied. In-vivo trials should follow and we might be many years away from a therapy that’s deemed safe for humans. If the therapy works, though, then this might prove to be a holy grail in medicine. We can find new classes of antibiotics, and these will certainly work well. But, eventually, we’ll be thrown back to the drawing board. It’s only a matter of time,  as bacteria constantly adapts to whatever biological therapy we throw at them.

“While we can always count on these superbugs to adapt and fight the therapy, we can quickly tailor these quantum dots to come up with a new therapy and therefore fight back faster in this evolutionary race,” Prashant Nagpal, senior author of the study

[via Science Alert]

RelatedPosts

Bacterial superbugs have become up to 10 times more tolerant to alcohol-based hand sanitizers
Psychobiotic germs could be the next game changer in psychiatry and recreational drug use alike
First ever computer model of a living organism performed
Microorganisms can survive in space and on other planets, safe behind dried-up biofilms
Tags: bacteria

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Biology

Scientists Taught Bacteria to Make Cheese Protein Without a Single Cow

byTudor Tarita
1 week ago
Chemistry

A Simple Heat Hack Could Revolutionize How We Produce Yogurt

byMihai Andrei
2 weeks ago
Health

There might be an anti-aging secret hiding in magic mushrooms

byTudor Tarita
2 weeks ago
Environment

This New Bioplastic Is Clear Flexible and Stronger Than Oil-Based Plastic. And It’s Made by Microbes

byTudor Tarita
2 weeks ago

Recent news

This Study Finds a Chilling Link Between Personality Type and Trump Support

July 30, 2025
A graphical depiction of an atom with the electrons around the nucleus.

After 100 years, physicists still don’t agree what quantum physics actually means

July 30, 2025

Scientists Analyzed a Dinosaur’s Voice Box. They Found a Chirp, Not a Roar

July 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.