ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Mind & Brain

Electric device can increase or decrease learning speed

Mihai AndreibyMihai Andrei
March 25, 2014
in Mind & Brain, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

For most college students, caffeine fueled sessions are part of a routine. But what if there was a way to accelerate learning when needed? What if a real, scientific “thinking cap” were developed? According to a new study conducted by Vanderbilt psychologists, that may not be that far away.

Robert Reinhart, a Ph.D. candidate, and Geoffrey Woodman, assistant professor of psychology at Vanderbilt University, show that it is possible to selectively manipulate our ability to learn through the application of a mild electrical current to the brain – this effect can be enhanced or depressed depending on the direction of the current. In other words, they can use the current to accelerate or slow down your learning; they tested it, and it works.

Learning from mistakes

Whenever you make a mistake, your medial-frontal cortex is the part of your brain responsible for letting you know – it’s basically the “oops reflex”. Previous study have shown that this “oops signal” is basically an electric current in the brain, but so far, it’s not really clear exactly why and how this happens. Reinhart and Woodman liked the idea that this is happening because we learn from our mistakes, and they decided to test it.

“And that’s what we set out to test: What is the actual function of these brainwaves?” Reinhart said. “We wanted to reach into your brain and causally control your inner critic.”

So using a simple elastic band that secures 2 electrodes to volunteers’ head, researchers applied 20 minutes of transcranial direct current stimulation (tDCS) to each subject. In tDCS, a mild current is emitted from the anodal electrode, through the skin, muscle, bones, passes through your brain, and then goes to the cathode, to complete the circle. This may sound complicated and invasive, but it’s a really mild experience.

“It’s one of the safest ways to noninvasively stimulate the brain,” Reinhart said. The current is so gentle that subjects reported only a few seconds of tingling or itching at the beginning of each stimulation session.

The learning experience

The subjects were part of three sessions, and were randomly given either an anodal (current traveling from the electrode on the crown of the head to the one on the cheek), cathodal (current traveling from cheek to crown) or a placebo – a sham condition which merely replicated the physical tingling sensation under the electrodes without affecting the brain. The subjects had no way of distinguishing which of the three stages they were experimenting – and they weren’t aware of these conditions.

After 20 minutes of stimulation, they were given a task which involved figuring out by trial and error which buttons on a game controller corresponded to specific colors displayed on a monitor. The task was sometimes made harder by having some colors which they weren’t supposed to respond to. For even more difficulty, they had less than a second to respond correctly – the game became harder and harder until they started making more and more mistakes – which is what researchers were following.

RelatedPosts

Celebrating the tiny microbes that make cheese possible
The Lefant M1 robot vacuum review: good cleaning and affordable Lidar
This Futuristic Laser Blood Test May Be the Key to Beating Cancer Early
Feathered dinosaurs may have accidentally developed flying — while running

The outcomes

When anodal current was applied, the spike was almost twice as large on average, and had significantly higher in a majority of the individuals tested (about in 3 out of 4). This was clearly reflected in the way they interacted with the task: they made fewer errors and learned from their mistakes more quickly than before the sham stimulus – they learned faster than normal. However, when the cathodal current was applied, the researchers observed the opposite result – the spike was significantly smaller, and the participants had a harder time learning from their mistakes.

“So when we up-regulate that process, we can make you more cautious, less error-prone, more adaptable to new or changing situations—which is pretty extraordinary,” Reinhart said.

For the participants, the results were not noticeable – the difference was a 4% (plus for the anode current, minus for the cathode current); this may not seem like much, but it is significant – a 4% improvement on a such a task can work wonders.

“This success rate is far better than that observed in studies of pharmaceuticals or other types of psychological therapy,” said Woodman.

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Photo of Ceres captured by NASA's Dawn spacecraft.
Astronomy

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

byRupendra Brahambhatt
3 days ago
Future

Are Cyborg Jellyfish the Next Step of Deep Ocean Exploration?

byMihai Andrei
3 days ago
Economics

Can AI help us reduce hiring bias? It’s possible, but it needs healthy human values around it

byAlexandra Gerea
3 days ago
a cat napping
Health

Does a short nap actually boost your brain? Here’s what the science says

byMihai Andrei
3 days ago

Recent news

Photo of Ceres captured by NASA's Dawn spacecraft.

Frozen Wonder: Ceres May Have Cooked Up the Right Recipe for Life Billions of Years Ago

August 22, 2025

Are Cyborg Jellyfish the Next Step of Deep Ocean Exploration?

August 22, 2025

Can AI help us reduce hiring bias? It’s possible, but it needs healthy human values around it

August 22, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.