ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Nanotechnology

University of California 3D printed fish are the most advanced microbots we built to date

Nanoengineers from the San Diego University of California used innovative, self-developed 3D printing methods to create multipurpose, fish-shaped microbots - that they call microfish - which can swim around efficiently through liquids, powered by hydrogen peroxide and are magnetically controlled.

Alexandru MicubyAlexandru Micu
August 26, 2015
in Health, Nanotechnology, News, Robotics, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Nanoengineers from the San Diego University of California used innovative, self-developed 3D printing methods to create multipurpose, fish-shaped microbots – that they call microfish – which can swim around efficiently through liquids, powered by hydrogen peroxide and are magnetically controlled.

3-D-printed microfish contain functional nanoparticles that enable them to be self-propelled, chemically powered and magnetically steered. The microfish are also capable of sensing and removing toxins.
Image credits: J. Warner, UC San Diego Jacobs School of Engineering.

Traditional methods of microrobot construction allow for various locomotion mechanisms to be installed on the tiny chasis: microjet engines, microdrillers or microrockets. Most of these robots are incapable of performing more sophisticated tasks however, due to the simplicity of their design. Being made of homogenous, inorganic materials with simple spherical or cylindrical structures, they do not carry the tools and they do not have the structures required for complex tasks. In this new study, researchers demonstrated a simple way to create more complex microrobots.

The research was led by Professors Shaochen Chen and Joseph Wang of the NanoEngineering Department at the UC San Diego, with their findings published in the August 12 issue of Advanced Materials journal.

What makes these microfish special?

Example of a fly microrobot. Very tiny!
Image via space-travel

Drawing on Professor Wang’s expertise in microrobot design, and Professor Chen’s advances in 3D printing technology, the team’s custom-built microfish are a huge leap from the relatively simpler designs engineers were capable of producing up until now. One of the most useful addition is that the microfish can easily be equipped with several different kinds of functional nanoparticles in specific parts of their bodies. Nanoengineers installed platinum nanoparticles in the tails of the fish, which react with hydrogen peroxide to propel them forward; magnetic iron oxide nanoparticles were embedded into the heads, to allow them to be steered with magnets.

“We have developed an entirely new method to engineer nature-inspired microscopic swimmers that have complex geometric structures and are smaller than the width of a human hair. With this method, we can easily integrate different functions inside these tiny robotic swimmers for a broad spectrum of applications,” said the co-first author Wei Zhu, a nanoengineering Ph.D. student in Chen’s research group at the Jacobs School of Engineering at UC San Diego.

As a proof-of-concept demonstration, the researchers incorporated toxin-neutralizing nanoparticles throughout the bodies of the microfish. Specifically, the researchers mixed in polydiacetylene (PDA) nanoparticles, which capture harmful pore-forming toxins such as the ones found in bee venom. The researchers noted that the powerful swimming of the microfish in solution greatly enhanced their ability to clean up toxins. When the PDA nanoparticles bind with toxin molecules, they become fluorescent and emit red-colored light. The team was able to monitor the detoxification ability of the microfish by the intensity of their red glow.

“The neat thing about this experiment is that it shows how the microfish can doubly serve as detoxification systems and as toxin sensors,” said Zhu.

The team hopes that these proof-of-concept synthetic microfish will inspire a new generation of ‘smart’ microrobots that have diverse capabilities such as detoxification, sensing and directed drug delivery, researchers said.

“Another exciting possibility we could explore is to encapsulate medicines inside the microfish and use them for directed drug delivery,” said Jinxing Li, the other co-first author of the study and a nanoengineering Ph.D. student in Wang’s research group.

Chen’s 3D printing technology

Microfish fabrication is based on a rapid, high-resolution 3D printing technology called microscale continuous optical printing (μCOP), a development of Chen’s lab.

RelatedPosts

Scientists 3D print models of impact craters on Moon and Mars
Talkative robots make humans chat too — especially robots that show ‘vulnerability’
Meet Tolley, the single most adorable robot you’ll ever see ever — who’s also a breakthrough
NASA is offering over $2 million for the best design for a 3D printed Martian habitat

Some of the benefits of μCOP printing are speed, scalability precision and flexibility. Hundreds of 120 microns long and 30 microns thick microfish can be printed within seconds, without using any harsh chemicals. As the μCOP technology is digitized, researchers could easily experiment with various designs for their microfish, even including shark and manta ray shapes. And it doesn’t stop there, either.

“With our 3D printing technology, we are not limited to just fish shapes. We can rapidly build microrobots inspired by other biological organisms such as birds,” said Zhu.

The key component of the μCOP technology is a digital micromirror array device (DMD) chip, which contains approximately two million micromirrors. Each micromirror is individually controlled to project UV light in the desired pattern (in this case, a fish shape) onto a photosensitive material, which solidifies upon exposure to UV light. The microfish are built using a photosensitive material and are constructed one layer at a time, allowing each set of functional nanoparticles to be “printed” into specific parts of the fish bodies.

“This method has made it easier for us to test different designs for these microrobots and to test different nanoparticles to insert new functional elements into these tiny structures. It’s my personal hope to further this research to eventually develop surgical microrobots that operate safer and with more precision,” said Li.

 

Tags: 3d printingMicrofishMicrorobotsrobotsUniversity of California San Diego

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Chemistry

Scientists Created a 3D Printing Resin You Can Reuse Forever

byTudor Tarita
1 week ago
Animals

To Fight Invasive Pythons in the Everglades Scientists Turned to Robot Rabbits

byTudor Tarita
2 weeks ago
Biology

Scientists 3D Printed Microscopic Elephants and Barcodes Inside Cells for the First Time

byRupendra Brahambhatt
1 month ago
Future

This Ancient Grain Could Power the Future of 3D-Printed Food

byMihai Andrei
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.