ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Genetics

Twisting DNA into unexpected shapes raises new exciting possibilities

Mihai AndreibyMihai Andrei
October 12, 2015 - Updated on October 13, 2015
in Genetics, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Scientists Blasted Human Cells With 5G Radiation and the Results Are In
Researchers obtain oldest-ever human DNA from ancient tooth
Origin of life a fluke? Study suggests more’s at play than just randomness
We’ve found the genetic key to making red blood cells

DNA – you either know is as deoxyribonucleic acid, or that stuff that somehow makes us what we are. DNA is the body’s way of storing information about yourself: how the cells arrange in your body, how hereditary material is organized, and how you function. DNA is classically thought of as a distinctive double helix structure, but coiling it into new shapes could raise interesting new possibilities, a new study has found.

New research shows that DNA coils into crazy shapes. Here, images of tiny DNA looped into a figure-8, frozen and viewed with microscopy (yellow), with a computer simulation of its predicted shape superimposed. (The purple is also a computer simulation)
Credit: Thana Sutthibutpong

In a study published this week in the journal Nature Communications, Dr. Sarah Harris from the University of Leeds suggests that studying these supercoiled DNA shapes could enable us to develop better drugs and treatments, especially treatments that directly affect the DNA, like chemotherapy for example.

“This is because the action of drug molecules relies on them recognizing a specific molecular shape — much like a key fits a particular lock,” Harris said in a statement. “When Watson and Crick described the DNA double helix, they were looking at a tiny part of a real genome, only about one turn of the double helix. Our study looks at DNA on a somewhat grander scale — several hundreds of base pairs — and even this relatively modest increase in size reveals a whole new richness in the behavior of the DNA molecule,” she said, referring to the famous biologists James Watson and Francis Crick who first published a paper on the DNA structure in 1953.

DNA is made of about 3 billion base pairs, and can be spread up to a distance of 1 meter; this potential meter has to coil up inside a cell nucleus – so as you can imagine… it’s coiled up a lot. To understand this process, Harris’ team “manually” coiled DNA, turn by turn, using short circular snippets of DNA made up of thousands of base pairs. What they found was that even small changes in shape can have massive effects

“Even this relatively modest increase in size reveals a whole new richness in the behavior of the DNA molecule,” Harris said.

After they developed these new shapes, they inserted an enzyme called human topoisomerase II alpha which relaxes the coil just like in the human body. This indicates that the longer shapes they obtained mimic the longer coils actually found in the human body. After that, they used special microscopy to visualize their new shapes, while also developing models of them on the computer.

This could not only indicate new features and mechanical properties of DNA, but it could help us better understand how our DNA would react to specific treatments – and design these treatments so that they don’t do anymore damage.

Tags: dnadouble helixgenetics

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Genetics

UK Families Welcome First Healthy Babies Born With DNA From Three People

byTudor Tarita
3 weeks ago
ozzy osbourne in concert
Genetics

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

byMihai Andrei
3 weeks ago
Biology

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

byTudor Tarita
1 month ago
Health

Herpes Virus Hijacks Human DNA Within Just an Hour of Infection

byTudor Tarita
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.