ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Genetics

What really causes aging? Study suggests “parasitic DNA fragments”

Mihai AndreibyMihai Andrei
September 25, 2014
in Genetics, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Causes of Pakistan’s new island revealed – it’s a mud volcano
World-first Braille Smartwatch brings all the connectivity of a smartphone to your fingertips
They were looking for a beaked whale. Instead, they may have found a new species
NASA observers rapidly growing sun spot

Most organisms, including humans, have parasitic DNA fragments called ‘jumping genes’ that insert themselves into DNA molecules, disrupting genetic instructions in the process. This phenomenon can interfere with the good health of the individual, causing numerous conditions, including cancer. Now, a new study has documented how a protein called Sirt6 keeps these fragments (technically called retrotransposons) at bay. Better understanding this mechanism could be very important in fighting ageing.

“About half of the human genome is made up of retrotransposons,” said Professor of Biology Vera Gorbunova. “By better understanding why these genomic parasites become active, we hope to better understand and perhaps delay the aging process in humans.”

Retrotransposons usually remain inactive throughout the entire life, but once they become active, they can “jump around” through the genome, causing trouble in one or more areas of the body. Sirt6 keeps this expansion at bay. But what happens when you get older?

Sirt6 has many functions to play in the body. Image via Nature.

 

Well, as you age, your cells start to gather more and more DNA pieces, which has to be constantly maintained and repaired. Sirt6 plays a crucial role in that repair process – and as it has more and more to work to do, it has less and less resources to fight retrotransposons. Researchers believed that if they could supplement the body with the protein, there would be enough resources to handle DNA repairing and keep them at bay. They set out to see if this was the case.

In order to further test this idea, they artificially caused damage in the cells of younger mice. They then found that “stressed cells”, with more damage to the DNA also have more retrotransposons. Then, they also introduced Sirt6 protein in the mice, and found that the “jumping genes” disappeared.

“This suggests that supplying more Sirt6 protein might protect older cells from aging,” said Gorbunova. “The idea would be to increase the Sirt6 pool so that enough proteins are available for both DNA repair and for keeping the retrotransposons inactive.”

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Future

AI ‘Reanimated’ a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

byNir Eisikovitsand1 others
5 hours ago
News

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

byMihai Andrei
21 hours ago
Future

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

byTibi Puiu
22 hours ago
Diseases

This new blood test could find cancerous tumors three years before any symptoms

byMihai Andrei
23 hours ago

Recent news

AI ‘Reanimated’ a Murder Victim Back to Life to Speak in Court (And Raises Ethical Quandaries)

June 17, 2025

This Rare Viking Burial of a Woman and Her Dog Shows That Grief and Love Haven’t Changed in a Thousand Years

June 17, 2025

This EV Battery Charges in 18 Seconds and It’s Already Street Legal

June 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.