ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Genetic study of early human limb development may help unlock our evolution

Tibi PuiubyTibi Puiu
July 4, 2013
in Biology, Genetics
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Any amount of neonicotinoids can be harmful for bees, study finds
All-new, natural microbeads could be the future of cosmetics
What is a Faraday cage and how does it work?
Check out the world’s first man-made bat cave

A number of human-like unique limb features, like the thumb, can be witnessed from the earliest most stages of development. Intuition tells us that this means the genetic changes and material that underlie these traits are active in the embryo stage. Recently, researchers Yale School of Medicine found there are thousands of active sequences that control gene activity in the developing human limb. These are believed to have played a major part in the evolution of the highly dexterous, and in many aspects unique, human arms and legs.

https://www.zmescience.com/research/studies/ape-human-infant-gestures-similar-evolution-language-0t54265/
9 week-old human embryo. (c) Wikipedia

Its important to note that the exact genetic mechanisms that control development of human limbs have not been identified, but instead provides scientists with the first genome-wide view of candidates to investigate.

“We now have a parts list that may account for these biological changes,” said James P. Noonan, associate professor of genetics, investigator for the Kavli Institute and senior author of the study.

In order to trace where these gene sequences might be, the researchers compared the human genome against other genomes. Previous research starting with 2008 used this approach to identify a single human gene regulatory sequence showing human-specific activity in the developing limb that may have contributed to the evolution of the human thumb, after the human genome was put against the genome of other primates. Results back then weren’t enough to explain just how many of these active sequences were involved.

The present paper  looked for differences in the activity of these regulatory sequences across the entire genomes of human, rhesus monkey, and mouse during limb development. These active regulatory sequences were identified and tagged using a specific biomarker, before being mapped. Subsequent analysis of these maps showed that all three species go through more or less the same limb development genetics, before branching out . Specifically, the researchers found a fraction of regulatory sequences are active only in the human embryonic limb. These sequences likely gained activity since humans’ divergence from the rhesus monkey about 25 million years ago.

“It has been difficult to understand how human traits evolved, because we didn’t have any idea where the important genetic changes might be,” Noonan said. “Now we do, and we have the experimental tools to determine what biological effects these changes may have. Our study also provides a roadmap for understanding other human-specific traits that arise during development, such as increased brain size and complexity.”

The paper was published in the journal Cell on July 3.

 

ShareTweetShare
Tibi Puiu

Tibi Puiu

Related Posts

News

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

byTibi Puiu
22 hours ago
Offbeat

Brazil’s ‘Big Zero’ Stadium on the Equator Lets Teams Change Hemispheres at Half Time

byMihai Andrei
1 day ago
Biology

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

byTibi Puiu
1 day ago
News

Helsinki went a full year without a traffic death. How did they do it?

byMihai Andrei
1 day ago

Recent news

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

August 2, 2025

Brazil’s ‘Big Zero’ Stadium on the Equator Lets Teams Change Hemispheres at Half Time

August 1, 2025

Peacock Feathers Can Turn Into Biological Lasers and Scientists Are Amazed

August 1, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.