ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Genetics

Enzyme allows mice to eat more, and gain less weight

Tibi PuiubyTibi Puiu
November 16, 2011
in Genetics, Health, Mind & Brain, Studies
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Debunking some misconceptions about evolution
Research identifies a gene that makes our brains (and those of primates) unique
Niceness is in your genes: scientists find pro-social behavior is influenced by genetics
Older diabetics face high over-treatment risk
Mice altered to express the IKKbeta enzyme (right column) in their fat had smaller globules of fat in their subcutaneous adipose tissue (top row) and in their liver (bottom row) than normal mice (left column). (Credit: Xu Lab)

Scientists have genetically engineered mice able to express a certain enzyme, which allows for an increased metabolic rate. The lab mice infussed with this enzyme in their fat tissue were able to eat more, but gain far less weight than their naturally bred brethren.

It’s generally acknowledged that obesity and inflammation cause insulin resistance, however it’s not perfectly understood why this happens. Embarking on a research that seeks to clarify how obesity and inflammation affect insulin resistance, Brown University researchers changed the sequence of events for transgenically engineered mice by inducing inflammation via the IKKbeta enzyme in their fatty tissue before they were obese.

They then procedeed in administrating a fatty diet to two groups of mice, one altered, the other natural, with all mice starting at the same weight. They observed that 22 weeks on a high-fat diet, however, altered male mice weighed less than 38 grams while unaltered male mice weighed more than 45 grams. After switching to a less fatty diet, the weight differences between the two groups weren’t as evident, however they remained statistically significant.

“Turning on this molecule has a very dramatic impact on lipid metabolism,” says Haiyan Xu, assistant professor of medicine at Brown University and corresponding author of a paper describing the research published online in the journal Endocrinology.

The altered mice not only managed to eat more and gain less weight, but due to their accelerated metabolism, researchers could observe they had lower sugar levels in their blood, after a glucose shot, than those of the control mice. An insulin shot was also administered, and researchers also remarkably observed how insulin was more effective.

Scientists are now trying to figure out the mechanisms through which IKKbeta enzyme can increase metabolic performance. One thing’s for certain for the researchers responsible for the study: obesity and inflammation are both promoters of insulin resistance, and obesity seems to be the worse one, Xu says. “Lower body weight is always a beneficial thing for influencing insulin sensitivity. Reduced adiposity wins over increased inflammation.”

source

Tags: enzymegenetic engineeringgeneticsinsulinobsesity

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

A Man With Type 1 Diabetes Produces His Own Insulin After Receiving Millions of Gene Edited Pancreatic Cells

byTudor Tarita
2 days ago
Genetics

Artificial selection — when humans take what they want genetically

byShiella Olimpos
3 months ago
Archaeology

Cats Came Bearing Gods: Religion and Trade Shaped the Rise of the Domestic Cat in Europe

byMihai Andrei
4 months ago
Animals

Some 31 million years ago, these iguanas rafted over 5,000 miles of ocean

byTudor Tarita
5 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.