ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

Switch from batch to continuous mass production may drastically cut cost and speed of medicine manufacturing

Tibi PuiubyTibi Puiu
September 9, 2013 - Updated on February 15, 2019
in Chemistry, Health, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

pharmaceutical-medicine-continuous-flow-production

Henry Ford’s Model T automobile changed not only the way the average American traveled (the first trully affordable vehicle for the middle class), but the way industry in all its forms viewed production. By switching from hand craft to the assembly line, Ford drastically cut cost and speed of production of his automobiles, a model that was subsequentely applied for virtually all consumer goods. The pharmaceutical industry, despite relying on a mass production of medicine system as well, is far from the same level of efficiency and productivity other industries exhibit. This is because the technological flux of producing medicine isn’t continuous. Instead, most of the world’s billions of capsules filled with various substances, vaccines and so forth are produced in batches.

At the 246th National Meeting & Exposition of the American Chemical Society (ACS), some 7,000 papers were presented on new advances in science and other topics. Bret E. Huff of Eli Lilly and Company, a major pharmaceutical company from the US, was also present and shared one of the most interesting presentations at the event.

“The difference between batch and continuous processing is somewhat like the difference between a ferry boat and a bridge for getting cars and people across a river,” explained huff. “A ferry moves cars across a river one batch at a time. A bridge provides a continuous flow of cars across the river. A bridge is typically open, with the flexibility to meet demand, without having a line-up of cars waiting for the next trip across.”

Traditionally, medicine is made batch by batch. Ingredients typically undergo a series of batch-wise reactions with isolation of solid intermediates before finally being isolated and drummed into bulk containers. The active pharmaceutical ingredient then moves on to the next step, processing into a granular form, followed by collecting into bulk containers. The processing continues through drying and other stages before being compressed into tablets and coated. During the process, inevitably some ingredients are wasted at each step, besides other machine related and production inefficienties.

There are many disadvantages to working in batches. First of all, it’s very time dependent as a batch may typically take days to weeks to complete. In the meantime, if a new order is placed or if production needs to be cut down, the pharma plant managers need to adjust at the next batch, current production being out of their hands. A continuous technological flow for medicine production would solve a number of hurdles currently facing the industry, however in the past this wasn’t technologically feasible. Companies risked altering quality, purity and safety of their drugs.

Huff argues that it is now possible to easily implement continuous mass production of medicine, incorporating all aspects of medicine fabrication in one continuous and, best of all, flexible production akin to assembly-line production. This also includes quality-control testing and other monitoring operations that can be fully integrated into the continuous-flow operation.

“By early next year, Eli Lilly and Company will have installed and demonstrated four different continuous-processing platforms,” Huff said. “Currently, almost all of our potential medicines that are in development have continuous-processing steps in place.”

Most likely, not all drugs can be produced in a continuous-flow operation, but according to Huff most of them could – at least the popular ones, currently prescribed to billions of people accross the globe. Drug manufacturing costs could see a dramatic cut, as both production time and losses are significantly lower. Whether this also translates to a reduced cost for the end consumer is a different side of the problem.

RelatedPosts

The UN calls for an end on the War on Drugs and “prevention and treatment” as a replacement
What are the most addictive drugs on Earth?
Is lighting up the answer to America’s opioid epidemic?
Being empathetic might put you at risk of relapsing as a coping mechanism
Tags: drugsmedicine production

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Elon Musk’s Drug Use Was Worse Than Anyone Knew and It Didn’t Stop at Ketamine

byTibi Puiu
2 weeks ago
Health

How cocaine overpowers basic human needs like thirst and hunger

byTibi Puiu
1 year ago
Health

Is this a scam? Prescription drugs cost 3 times more in the U.S. than in other wealthy countries

byTibi Puiu
1 year ago
Health

Bronze Age people in Mediterranean islands were taking hallucinogenic drugs 3,000 years ago

byFermin Koop
2 years ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.