ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

For the hive: bacteria grow altruistically for the greater good of the colony

Tibi PuiubyTibi Puiu
December 12, 2013 - Updated on January 6, 2014
in Biology, Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

New method developed to stop bacteria from sharing antibiotic resistance genes
Geologists uncover ancient mass extinction from 2 billion years ago
Researchers develop new bandage that senses and treats drug-resistant bacteria
Why kids hate broccoli: a foul combination with oral bacteria

Researchers at MIT found that individual cells in a bacterial colony will grow in a manner that is beneficial to the whole culture, even if this comes at a personal expense for the cell. With this in mind, it appears seemingly complex colony structures can be explained by an essentially simple behaviour. The findings could aid researchers understand how bad bacteria growth can be halted or destroyed, and aid in drug testing.

“Once cells make that decision to live as a communal set of organisms, what other things do they have to start doing to make living as good as possible?” asks Chris Kempes, who did much of the work as a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “Once you enter into that intimate cooperation with neighboring cells to benefit the group, it starts to hint at becoming complex, multicellular life.”

For the greater good

bacteria-growth
A mutant strain of P. aeruginosa forms a hyper-wrinkled bacterial colony with prominent spokes. (c) MIT

Kempes and colleagues studied a particular strain of bacteria called Pseudomonas aeruginosa, typically found in both soil and water, and known to cause potentially lethal lung infections in humans (cystic fibrosis). The authors set-out to culture this bacteria in the lab  on solidified agar. Initially, the cells clumped together to form a smooth disk that continued to grow outward across the growth medium. After a while the cells began to grow upward too, forming wrinkles in a radial pattern as each wrinkle expanded in both height and width. From a certain limit point, however, the culture stopped growing in width and exclusively continued to grow in height.

The researchers presumed oxygen played a major role in this behaviour, so they decided to test this idea by performing a mathematical simulation. The model accurately rendered the distribution of oxygen within a community, compared with the group’s experimental results.  Then, by varying the width of wrinkles in the model , the researchers found that for a given amount of oxygen, there exists an optimal width to which wrinkles will grow in order to maximize a colony’s survival; any wider or narrower, and the entire community grows less quickly.

Back in the lab, the researchers grew more colonies under variable oxygen levels: 15%, 21% (Earth atmosphere) and 40%. Indeed, the colony adapted accordingly to oxygen levels, growing narrower wrinkles when there was less oxygen, and wider when more oxygen.

“It turns out the morphology of the colony can be clearly related to something that might do with the fitness of the colony,” Mick Follows says. “It’s very beautiful to see that in a simple way.”

Lars Dietrich adds, “In principle this could apply for most bacteria and even organisms from other domains of life, including microbial eukaryotes.”

Growing strong

Moreover, taking their experiments further, the MIT researchers also found there’s a genetic component that influences the bacterial colony’s growth structure and rate. In one experiment, they grew a culture  of P. aeruginosa  that lacked phenazines— chemicals that mimic the effect of oxygen, effectively helping a cell to breathe.  Apparently, these mutant bacteria grew narrower than the wild kind suggesting that more oxygen-like resources encourage such growth. A second mathematical model simulating the wild strain, developed by Kempes, showed similar results.

The present research provides valuable information on the spatial growth pattern of bacteria and may prove to be useful in following studies looking to battle certain bacterial diseases. Also, the model be useful in determining how a colony grows in the presence of certain chemicals or drugs, such as those that target cystic fibrosis.

“There is a growing literature on how bacterial populations can be used as model systems to understand other populations, such as cancer [cells],” says Joao Xavier, a computational biologist at Memorial Sloan-Kettering Cancer Center,, who was not involved in the research. “This paper makes an important contribution because it shows that simple metabolic processes can explain spatial structure that looks quite complex.”

“You could imagine searching for a chemical that disrupts a cell’s ability to figure out the optimal geometry, so they would die,” says Kempes, adding that while it may be difficult to limit a colony’s oxygen intake without also starving the lung, the group’s model and experiments “open up a playground for starting to think about testing different drugs.”

Tags: bacteriaoxygen

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Alien life

This Bizarre Martian Rock Formation Is Our Strongest Evidence Yet for Ancient Life on Mars

byMihai Andrei
2 days ago
Health

A Bacterial Protein Could Become the First True Antidote for Carbon Monoxide Poisoning

byTibi Puiu
4 weeks ago
Biology

Scientists Taught Bacteria to Make Cheese Protein Without a Single Cow

byTudor Tarita
2 months ago
Chemistry

A Simple Heat Hack Could Revolutionize How We Produce Yogurt

byMihai Andrei
2 months ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.