ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Acoustic tweezers levitate single cells using sound waves

Researchers found a way to manipulate single cells in three dimensions using sound waves. They devised acoustic tweezers that can position minute particles or cells anywhere within the fluid enclosure without touching, altering, deforming or labeling the particles in any way. The resolution or accuracy is between 1-2 micrometers. Work like this might enable us to design tissue implants which faithfully mimic the human tissues or organs destined to be replaced. Other methods, like 3D biological printing, alter or even destroy cells keeping them from functioning the way they ought to.

Tibi PuiubyTibi Puiu
January 26, 2016 - Updated on November 16, 2020
in Biology, Health, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

This Injectable Ink Lets Doctors 3D Print Tissues Inside the Body Using Only Ultrasound
Bioprinting tissue: a solution for faster, cheaper drug testing
Jupiter’s Great Red Spot is heating its upper atmosphere
Most fans don’t know it but Doctor Who’s sonic screwdriver exists for real. Well, sort of

Researchers found a way to manipulate single cells in three dimensions using sound waves. They devised acoustic tweezers that can position minute particles or cells anywhere within the fluid enclosure without touching, altering, deforming or labeling the particles in any way. The resolution or accuracy is between 1-2 micrometers. Work like this might enable us to design tissue implants which faithfully mimic the human tissues or organs destined to be replaced. Other methods, like 3D biological printing, alter or even destroy cells keeping them from functioning the way they ought to.

Numerical simulation results mapping the acoustic field around a particle that shows the physical operating principle for the 3-D acoustic tweezers. The 3-D trapping node in the microfluidic chamber is created by two superimposed, orthogonal, standing surface acoustic waves and the induced acoustic streaming. Credit: Tony Jun Huang, Penn State
Numerical simulation results mapping the acoustic field around a particle that shows the physical operating principle for the 3-D acoustic tweezers. The 3-D trapping node in the microfluidic chamber is created by two superimposed, orthogonal, standing surface acoustic waves and the induced acoustic streaming. Credit: Tony Jun Huang, Penn State

The setup is based on a microfluidic device researchers from  MIT, Penn State University, and Carnegie Mellon University previously developed. It uses two sources that each produces a standing acoustic wave — waves of constant height. When the two meet, they form a node whose pressure traps a particle. By altering the phase and amplitude of the wave, the particle is moved in 2D along a X-Y axis. Using this method, researchers separated cancerous cells from healthy cells, something that might prove very useful in diagnosing rare forms of cancer.

Most recently, the setup was upgraded so that particles could be positioned in 3-D. Polystyrene particles as well as mouse fibroblast cells were moved vertically by the researchers by altering the acoustic waves’ power (rate at which sound energy is emitted).

“The results presented in this paper provide a unique pathway to manipulate biological cells accurately and in three dimensions, without the need for any invasive contact, tagging, or biochemical labeling,” says Subra Suresh, president of Carnegie Mellon and former dean of engineering at MIT. “This approach could lead to new possibilities for research and applications in such areas as regenerative medicine, neuroscience, tissue engineering, biomanufacturing, and cancer metastasis.”

Formation of arbitrary cell culture patterns forming a "3," "D," "A." and "T" by printing of single HeLa S3 cells via 3-D acoustic tweezers. Credit: Tony Jun Huang, Penn State.
Formation of arbitrary cell culture patterns forming a “3,” “D,” “A.” and “T” by printing of single HeLa S3 cells via 3-D acoustic tweezers. Credit: Tony Jun Huang, Penn State.

The setup has 1 micrometer accuracy horizontally and 2 micrometer accuracy vertically. In experiments, particles as large as 10 micrometers were basically moved at a pace of about 2.5 micrometers per second. It takes between a couple of seconds to a few minutes for a cell to be placed in the desired position, depending on the distance.

 “Adding a third dimension for precisely manipulating single cells for bioprinting further advances acoustic tweezers technology,” said Ming Dao, director, Nanomechanics Lab, Massachusetts Institute of Technology. “The accompanying modeling provides solutions for cell manipulation, enabling validation of the method as well as possible system optimization.”

“3-D acoustic tweezers can pattern cells with control over the number of cells, cell spacing and the confined geometry, which may offer a unique way to print neuron cells to create artificial neural networks for neuron science applications or regenerative neuron medicine,” said Tony Jun Huang, professor and The Huck Distinguished Chair in Bioengineering Science and Mechanics.

Using the setup, researchers stacked cells together which makes it a form of bioprinting. Findings were reported in PNAS.

“This is an exceptionally innovative approach of manipulating particles and single cells in 3-D in fluids,” says Taher Saif, a professor of mechanical science and engineering at the University of Illinois at Urbana-Champaign, who was not part of the research team. “Since acoustic energy is used for this manipulation, the approach is noninvasive and the cells maintain their viability. Overall, the method presented will be of significant interest for a broad community, from biologists to bioengineers.”

Tags: acoustic wavesbioprinting

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Concept image of 3D printed red blood cells.
Biology

This Injectable Ink Lets Doctors 3D Print Tissues Inside the Body Using Only Ultrasound

byRupendra Brahambhatt
3 weeks ago
News

A Nearby Star Sings a Stellar Tune, and Scientists can Hear Its Age

byTudor Tarita
1 month ago
Future

New 3D Bio-printer Injects Living Cells Directly Onto Injuries To Heal Bones and Cartilage

byMihai Andrei
6 months ago
Doctor who sonic screwdriver for real
Culture & Society

Most fans don’t know it but Doctor Who’s sonic screwdriver exists for real. Well, sort of

byRupendra Brahambhatt
3 years ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.