ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

This pen 3-D prints bone directly on site of injury

Tibi PuiubyTibi Puiu
December 13, 2013 - Updated on January 6, 2014
in Health, News, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

How 3-D printers are set to revolutionize heart valves
Startup designs cast that heals bones, lets you scratch
Roman fish salting workshops reveal two whale species lost from the Mediterranean
Fossil Friday: ancient shark bones turn out to be the teeth of a new species of flying dinosaur
A handheld bio pen developed in the labs of the University of Wollongong will allow surgeons to design customised implants during surgery. (c)  University of Wollongong
A handheld bio pen developed in the labs of the University of Wollongong will allow surgeons to design customised implants during surgery. (c) University of Wollongong

Medicine and 3-d printing fit together like a glove. Imagine how many transplants and surgical procedures are so difficult to make or downright impossible because you can’t find a matching tissue or body part for the patient at hand. With 3-D printers, you can even make new bones – identical to those modeled from a patient that would require them. Now, researchers at University of Wollongong (UOW), Australia have unveiled a handheld tool, that closely resembles a pen, which doctors can use to locally 3-D print bone on the spot.

A 3-D printing ‘pen’

The bone pen delivers live cells and growth factors directly to the site of injury, like a sort of ‘stem cell’ ink, accelerating the regeneration of functional bone and cartilage. The cell material is confined inside a biopolymer such as alginate (seaweed extract),  while a second gel layer protects it at the outside. While the two layers of gel are combined in the pen head following extrusion and become dispersed upon an area of the doctor’s choosing,  a low powered ultra-violet light source is fixed to the device that solidifies the inks.

“The combination of materials science and next-generation fabrication technology is creating opportunities that can only be executed through effective collaborations such as this,” ACES Director Professor Gordon Wallace said.

“What’s more, advances in 3D printing are enabling further hardware innovations in a rapid manner.”

UOW’s Professor Gordon Wallace and his team at the Australian Research Council Centre of Excellence for Electromaterials Science developed the device.
UOW’s Professor Gordon Wallace and his team at the Australian Research Council Centre of Excellence for Electromaterials Science developed the device.

Once the cells are ‘drawn’ onto the surgery site they will multiply, become differentiated into nerve cells, muscle cells or bone cells and will eventually turn from individual cells into a thriving community of cells in the form of a functioning a tissue, such as nerves, or a muscle.

“This type of treatment may be suitable for repairing acutely damaged bone and cartilage, for example from sporting or motor vehicle injuries. Professor Wallace’s research team brings together the science of stem cells and polymer chemistry to help surgeons design and personalise solutions for reconstructing bone and joint defects in real time,” said Professor Peter Choong, Director of Orthopaedics at St Vincent’s Hospital Melbourne and the Sir Hugh Devine Professor of Surgery, University of Melbourne.

Tags: 3-d printer3-d printingbones

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

The heaviest animal ever should have never existed, scientists say

byTibi Puiu
1 year ago
Anthropology

Ancient Taiwan was inhabited by ‘short, dark-skinned’ people that also populated South Africa

byAlexandru Micu
3 years ago
Fossil Friday

Fossil Friday: ancient shark bones turn out to be the teeth of a new species of flying dinosaur

byAlexandru Micu
5 years ago
Biology

We’re one step closer to printing functional human ovaries

byAlexandru Micu
6 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.