ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Future

Researchers hijacked bacteria to produce sustainable, meat-like protein

These cyanobacteria can produce protein fibres, taking us a step closer to ideal texture from sustainable lab-grown meat.

Mihai AndreibyMihai Andrei
April 29, 2024
in Biology, Future, News
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit

By now, we’ve all heard that eating meat is not good for the planet. The industry produces a lot of emissions and uses up a lot of environmental resources. But realistically, the only way most people will reduce their consumption anytime soon is if they have palatable alternatives that replicate the “mouthfeel” of meat. Such alternatives do exist — but they’re not perfect. And, perhaps more importantly, they’re also hard to produce at scale, which means we need more alternatives.

But what if we have an unexpected ally in this struggle: cyanobacteria?

Cyanobacteria under a microscope
Cyanobacteria under a microscope. Image via Wiki Commons.

Milking cyanobacteria

Cyanobacteria is also called “blue-green” algae — which is a misleading name because they’re not related to algae at all. They’re bacteria that have the ability to photosynthesize. In fact, they may be the first creatures that developed photosynthesis on Earth, some 3.8 billion years ago. In recent years, scientists have become more and more interested in cyanobacteria for use as a biomaterial or in various renewable technologies. They’ve even been proposed as alternatives to wood or cement, as an alternative for plastics, or as a CO2 sink. But their potential as a protein source has been less explored.

The key aspect in replicating the texture and taste of meat lies in protein. Contrary to popular belief, meat isn’t the only natural source of protein; not at all. Plenty of plants and algae also produce protein (some quite a lot), but the types of protein don’t have the same structure as meat. This means they don’t taste the same and don’t have the same texture either.

Cyanobacteria also doesn’t normally produce that type of protein. But researchers engineered cyanobacteria that has been coerced to produce it.

“Cyanobacteria, also known as blue-green algae, are living organisms that we have been able to get to produce a protein that they don’t naturally produce. The particularly exciting thing here is that the protein is formed in fibrous strands which somewhat resemble meat fibers. And, it might be possible to use these fibres in plant-based meat, cheese or some other new type of food for which we are after a particular texture,” says Professor Poul Erik Jensen of the Department of Food Science.

Hijacking genetics

The process is strikingly futuristic. The researchers hijack the cyanobacteria and insert foreign genes into it, basically using it as a host organism. Then, inside the cell, the protein starts to re-arrange itself into tiny threads (nanofibers). The process requires minimal processing — the cyanobacteria basically do all the work.

RelatedPosts

New structure that keeps cells bound together discovered in human cells
Eat more plant protein for a longer and healthier life, new study concludes
Orphan gene boosts the protein levels of crops
Lifeless prions are capable of evolution

“I’m a humble guy from the countryside who rarely throws his arms into the air, but being able to manipulate a living organism to produce a new kind of protein which organizes itself into threads is rarely seen to this extent — and it is very promising. Also, because it is an organism that can easily be grown sustainably, as it survives on water, atmospheric CO2 and solar rays. This result gives cyanobacteria even greater potential as a sustainable ingredient,” says an enthusiastic Poul Erik Jensen, who heads a research group specializing in plant-based food and plant biochemistry.

So instead of going for the more established approach, which involves taking an existing protein and processing it to make it look more meatlike, this approach basically generates meat-like protein all from the get-go.

“If we can utilize the entire cyanobacterium in foodstuffs, and not just the protein fibers, it will minimize the amount of processing needed. In food research, we seek to avoid too much processing as it compromises the nutritional value of an ingredient and also uses an awful lot of energy,” says Jensen.

Tomorrow’s cattle

Ironically, the fundamental of the process isn’t all that different from what we’re already doing with cows. Cows have also been hijacked, though not as directly. Cows nowadays produce much more meat and dairy than they used to because we’ve selected them for this. So, we used selective breeding instead of direct hijacking.

Researchers already envision a world in which cyanobacteria would become the “cows of the future”.

“We need to refine these organisms to produce more protein fibres, and in doing so, ‘hijack’ the cyanobacteria to work for us. It’s a bit like dairy cows, which we’ve hijacked to produce an insane amount of milk for us. Except here, we avoid any ethical considerations regarding animal welfare. We won’t reach our goal tomorrow because of a few metabolic challenges in the organism that we must learn to tackle. But we’re already in the process and I am certain that we can succeed,” says Poul Erik Jensen, adding:

“If so, this is the ultimate way to make protein.”

There’s another important bonus for this approach. Cyanobacteria is already grown industrially. You might have heard of spirulina — a so-called “superfood”. That’s actually a cyanobacteria, and the global spirulina market is estimated to be over $1.1 billion by 2030. This production can also be used for protein-producing cyanobacteria.

For now, however, there’s still a long way before we’ll be eating cyanobacteria meat, but the technology is poised to make an important impact. Along with processed plant protein and lab-grown meat, this approach promises to bridge the gap to more sustainable protein consumption and help reduce our global meat consumption.

Journal Reference: Julie A. Z. Zedler, Alexandra M. Schirmacher, David A. Russo, Lorna Hodgson, Emil Gundersen, Annemarie Matthes, Stefanie Frank, Paul Verkade, Poul Erik Jensen. Self-Assembly of Nanofilaments in Cyanobacteria for Protein Co-localization. ACS Nano, 2023; 17 (24): 25279 DOI: 10.1021/acsnano.3c08600

Tags: cyanobacteriameat alternativeprotein

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

The Earth’s oceans were once green. Then, cyanobacteria and iron came in

byMihai Andrei
2 months ago
Biology

Scientists Discover Largest Protein Hidden in Toxic Algae

byTibi Puiu
10 months ago
Future

Turning off a single protein extends mice’s lifespan by 25%

byMihai Andrei
11 months ago
Chemistry

This is the first fractal molecule in nature — the unexpected geometric artwork of evolution

byTibi Puiu
1 year ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.