ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Renewable Energy

Bacteria-printed solar cells produce electricity during both day and night

Living solar cells could power medical or environmental sensors. They're fully biodegradable too.

Tibi PuiubyTibi Puiu
November 28, 2017
in News, Renewable Energy
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: Imperial College London.
Credit: Imperial College London.

British researchers have achieved a breakthrough in biophotovoltaics (BPV) by printing electronic circuits and bacteria at the same time. The biological solar panel produce electricity both day and night, unlike conventional photovoltaic cells that are entirely reliant on sunshine. The entire device is also biodegradable, making it ideal for a disposable solar cell or battery that can decompose in composts or gardens.

“Cheap, accessible, environmentally friendly, biodegradable batteries without any heavy metals and plastics – this is what we and our environment really need but dont have just yet, and our work has shown that it is possible to have that,” said Marin Sawa from Imperial College London.

The living solar cells

Cyanobacteria are crucial organisms for all of the planet’s inhabitants, including us. They are photosynthetic organisms that have been living on Earth for billions of years. Up until 2.45 billion years ago, organisms had to rely on sulfate for their energy needs. But during a period known as Great Oxidation Event, for the first time, oxygen became a major component of the Earth’s atmosphere, indicating that cyanobacteria had taken over using sunshine, water and carbon dioxide to produce carbohydrates and oxygen.

Sawa and colleagues have now shown how cyanobacteria could potentially be used as an ink and printed from a common inkjet printer onto electrically conductive carbon nanotubes. These nanotubes were again inkjet printed on a piece of paper to etch precise patterns. The bacteria survived the ordeal and continued to supply electricity continuously for 100 hours during both light and dark cycles, as reported in the journal Nature Communications.

The bio-solar panel could resemble wallpaper (pictured), but is in fact an environmental sensor for monitoring air quality in the home. Credit: Imperial College London.
The bio-solar panel looks like wallpaper. Credit: Imperial College London.

However, the power they produce isn’t impressive — nine connected cells are capable of powering a digital clock or generating flashes of LED light. But that may be more than enough for some applications such as disposable environmental sensors disguised as wallpaper or paper-based sensors for monitoring patients with diabetes.

The field of biophotovoltaics, which employs cyanobacteria or algae that convert light into electricity, hasn’t really taken off. Cost, low power output, and short lifespan have all been challenges preventing the technology from scaling to an industrial level. British researchers, however, claim that their off-the-shelf inkjet printing method demonstrates the potential for scaling up the technology.

“Paper-based BPVs are not meant to replace conventional solar cell technology for large-scale power production, but instead, could be used to construct power supplies that are both disposable and biodegradable. Their low power output means they are more suited to devices and applications that require a small and finite amount of energy, such as environmental sensing and biosensors,” said Dr Andrea Fantuzzi, a co-author of the study from Department of Life Sciences at Imperial College London. \

The current paper-based BPV unit is palm-sized. The next step will see the team scale up their proof-of-concept to A4 size to determine the electrical output on a larger scale, as well as more powerful, long-lasting and robust.

 

RelatedPosts

Low level of antibiotics cause drug resistance in ‘superbugs’
China’s Tiangong space station has some bacteria that are unknown to science
New non-antibiotic treatment hijacks tuberculosis bacterium
Researchers grow futuristic bacteria-based leather that dyes itself
Tags: bacteriasolar panel

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Biology

Scientists Taught Bacteria to Make Cheese Protein Without a Single Cow

byTudor Tarita
4 weeks ago
Chemistry

A Simple Heat Hack Could Revolutionize How We Produce Yogurt

byMihai Andrei
4 weeks ago
Health

There might be an anti-aging secret hiding in magic mushrooms

byTudor Tarita
4 weeks ago
Environment

This New Bioplastic Is Clear Flexible and Stronger Than Oil-Based Plastic. And It’s Made by Microbes

byTudor Tarita
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.