ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

Otters can use paws and whiskers as accurate sensors

Not ony are they very precise, but they're also very decisive.

Mihai AndreibyMihai Andrei
September 18, 2018
in Animals, Biology
A A
Share on FacebookShare on TwitterSubmit to Reddit

For all their cuteness, otters are voracious eating machines. They can easily devour 25% of their own body weight each day just to keep warm. However, relatively little is known about how they search for food — but now, a new study has been able to shed some light on this aspect of their lives.

Otters are perfectly adapted to the semi-aquatic environment they typically live in. They boast long, slim bodies, and relatively short limb with webbed feet which they use to swim. They also have sharp claws and can hold their breath for prolonged periods, which lets them hunt and look for food beneath the surface. They’re also quite nimble and skilled, often pounding clams and snails on rocks balanced on their chests as they float around.

However, otters are also pretty shy, which makes the difficult to study in both nature and captivity, says Sarah McKay Strobel from the University of California Santa Cruz (UCSC).

“Sea otters can sometimes be viewed as the “problem child” when it comes to training”, says Strobel, recalling the months of effort that went into preparing a wild sea otter named Selka at the Long Marine Laboratory at UCSC for her starring role.

Strobel had a hunch that since otters often hunt in murky or cloudy waters, they don’t only rely on their sight and sense of smell to navigate the waters. In a new study, she and her colleagues describe that their paws and whiskers are extremely sensitive, being able to distinguish between millimeter-sized grooves.

Helped by a large team of volunteers, Strobel trained Selka the otter to approach a cabinet perched on the side of her pool, in which they concealed a pair of side-by-side vertically ridged boards: one with 2 mm wide grooves and another with 5mm wide grooves. Whenever Selka would touch the 2 mm board, the board would produce a click, and Selka would be rewarded. They also trained the otter to identify the 2 mm with her whiskers while blindfolded — a particularly difficult task. After the training process was completed outside of the water, the team raised the water level in the pool, inundating the cabinet and repeating the same process submerged.

It took months of painstaking (and sometimes fun) training but ultimately, after several variations and tweaks, Selka was able to identify the 2 mm grooves. Then, researchers tested her ability to distinguish the 2 mm grooved board from boards with grooves ranging from 2.1 to 3 mm wide.

RelatedPosts

Otters maintain patches of healthy kelp forests even when surrounded by “urchin barrens”
Teaching smart cars how humans move could help make them safer and better
The first self-driving taxis are here — and by “here” I mean Singapore
Paleontologists find 6.2 million year old wolf-sized otter

Selka was able to recognize the 2 mm grooves almost instantly if she encountered them first. If the grooves were the wrong width, she would quickly move on to search for the correct board. Not only was she very precise and accurate, but she was very decisive: it took less than 0.2 seconds to make a decision when testing with her paws, and 0.4 seconds when exploring with her whiskers. When human volunteers tried to do the same task, it took them 30 times longer.

It also made no difference if the boards were in the air or underwater — Selka seemed equally capable of distinguishing the grooves. Ultimately, she was able to distinguish grooves that were a meager 0.22 mm wider with her paw (0.48 mm wider with the whiskers).

Selka was also sneaky — whenever possible, she would memorize the correct solution so she wouldn’t have to work it out again.

“Selka used her memory to solve the trial as quickly as possible”, says Strobel, who suspects that sea otters’ ability to make rapid decisions based on touch is essential for their survival. “Their dives tend to be 1-2 minutes or shorter, which means they have to be very efficient,” she says, adding that results “suggest that sea otters are capable of using touch in this short amount of time to detect prey.”

The study was published in the Journal of Experimental Biology.

Journal Reference: Strobel, S. M., Sills, J. M., Tinker, M. T. and Reichmuth, C. J. (2018). Active touch in sea otters: in-air and underwater texture discrimination thresholds and behavioral strategies for paws and vibrissae. J. Exp. Biol. 220, jeb181347.

Tags: ottersmart

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Animals

This coastal ecosystem was degraded and damaged. Then, the otters came in

byMihai Andrei
1 year ago
Drugs

Demystifying nootropics – Is cognitive enhancement even a thing?

byMichelle Petersen
4 years ago
Animals

Giant otter believed to be extinct decades ago is spotted in Argentina

byFermin Koop
4 years ago
News

Otters maintain patches of healthy kelp forests even when surrounded by “urchin barrens”

byMihai Andrei
4 years ago

Recent news

Paleontologists Discover “Goblin-Like” Predator Hidden in Fossil Collection

June 23, 2025
assyrian basorelief rock

Stunning 12-Ton Assyrian Relief Unearthed in Iraq Reveals King Legendary King

June 21, 2025

Scientists uncover anti-aging “glue” that naturally repairs damaged DNA

June 20, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.