ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Scientists find diamonds forged deep within a lost, ancient planet of the early solar system

Pieces of an ancient planet formed long before Earth shed their secrets.

Tibi PuiubyTibi Puiu
April 18, 2018
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Focusing on Arrokoth promises to reveal the Kuiper Belt’s secrets
Stunning close-up views of scorching hot Mercury may surprisingly reveal ice in its craters
‘Oumuamua, our first interstellar visitor, is actually smaller than we thought
Scientists find water clouds and exotic, primitive atmosphere on a “warm Neptune”
Artist impression of an early solar system. Credit: NASA.
Artist impression of an early solar system. Credit: NASA.

About a decade ago, a violent explosion roughly 23 miles above the surface sent incendiary fragments hurling towards the dunes of the Nubian desert in Sudan. In and of itself, the event was not necessarily impressive, apart from the fancy light show — after all, our planet is constantly bombarded by relatively small objects. But, according to a new study, these meteorites have a much more dramatic origin and history than meets the eye. Scientists say that under the meteorites’ thick carbonized exterior hid diamonds which enclosed remnants of a long-lost planet or planetary embryo during the crazy days of the early solar system. 

It was mighty crowded back then

A jeweler wants diamonds to be perfect, meaning impurities should be kept to a minimum, ideally none at all. However, a diamond with inclusions is far more valuable from a scientific standpoint than a so-called flawless jewel. Because diamonds are forged at immense pressures and temperatures, typically deep inside the planet, the various materials that get trapped inside are quite hard to get a hold of at the surface — and diamonds can preserve them for billions of years.

The team led by Farhang Nabiei of the Ecole Polytechnique Federale de Lausanne in Switzerland was initially investigating the relationship between the diamonds and the layers of graphite surrounding them, when they realized the small pockets of material trapped inside looked far more interesting. With the help of a high-power electron microscope, the researchers studied the tiny diamonds inside a thin section of the meteorite and were astonished to learn they were formed at incredibly high pressures — much higher than any kind of pressure the meteorites might have been subjected to when they crashed into Earth.

A chemical map shows sulfur (red) and iron (yellow) inside the inclusions in the diamond matrix. Credit: Dr. F. Nabiei/Dr. E. Oveisi, EPFL, Switzerland.
A chemical map shows sulfur (red) and iron (yellow) inside the inclusions in the diamond matrix. Credit: Dr. F. Nabiei/Dr. E. Oveisi, EPFL, Switzerland.

Specifically, the diamonds must have formed at 20 gigapascals, which is the kind of pressure found deep within a planet the size of Mars or Mercury — but the meteorites come from neither of these planets or any other planet that we know of for that matter. The meteorites have, in fact, been classed as ureilites — a rare type of stony meteorite that has a unique mineralogical composition, very different from that of other stony meteorites. Transmission electron microscopy also revealed traces of chromite, phosphate, and iron-nickel sulfides inside the larger diamonds, which are inclusions that can be found in Earth’s diamonds, too. It’s the first time such inclusions have been identified inside extraterrestrial diamonds.

A colorized image shows the diamond phase (blue), inclusions (yellow) and the graphite region. Credit: Dr. F. Nabiei/Dr. E. Oveisi/Prof. C. Hébert, EPFL, Switzerland.
A colorized image shows the diamond phase (blue), inclusions (yellow) and the graphite region. Credit: Dr. F. Nabiei/Dr. E. Oveisi/Prof. C. Hébert, EPFL, Switzerland.

The size of the diamonds is another clue that we’re dealing with some very peculiar objects. Their average size is about 100 microns, which is about the size of a human hair. That may not sound like much, but that’s still larger than any diamond that could possibly form by shock transformation of graphite (i.e. when a meteorite crashes on Earth). This suggests that the diamonds formed deep in a body’s interior and not on impact. Such a planetary-sized body is now long gone, having been destroyed in a cataclysmic game of billiard early on in the solar system’s history. These early proto-planets would have been hurled towards each other by a tug of war between the gravities of a young Jupiter and the sun. The environment likely looked very crowded too, with multiple Mars-sized protoplanets destined to collide into each other.

“This study provides convincing evidence that the ureilite parent body was one such large ‘lost’ planet before it was destroyed by collisions [some 4.5 billion years ago],” researchers wrote in the new paper on the subject, published this week in the journal Nature Communications.

The discovery offers new insight into our solar system’s tumultuous past, helping piece together how it all came to be. This is merely the beginning, as hundreds of other ureilites could offer new clues to the nature of the early solar system and the evolution of its planets.

Tags: planetsolar system

Share28TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

This is HOPS-315, a baby star where astronomers have observed evidence for the earliest stages of planet formation. The image was taken with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Together with data from the James Webb Space Telescope (JWST), these observations show that hot minerals are beginning to solidify. In orange we see the distribution of carbon monoxide, blowing away from the star in a butterfly-shaped wind. In blue we see a narrow jet of silicon monoxide, also beaming away from the star. These gaseous winds and jets are common around baby stars like HOPS-315. Together the ALMA and JWST observations indicate that, in addition to these features, there is also a disc of gaseous silicon monoxide around the star that is condensing into solid silicates –– the first stages of planetary formation.
News

For the First Time Ever We Can See Planets Starting to Form Around a Star

byJordan Strickler
1 month ago
Astronomy

The James Webb telescope just found a planet by actually ‘seeing’ it

byMihai Andrei
2 months ago
News

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

byTibi Puiu
3 months ago
News

This Planet Is So Close to Its Star It Is Literally Falling Apart, Leaving a Comet-like Tail of Dust in Space

byJordan Strickler
4 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.