ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Psychology

What babies can see that you can’t anymore

If you want to an objective opinion, you should ask a baby.

Tibi PuiubyTibi Puiu
July 8, 2016
in News, Psychology
A A
Share on FacebookShare on TwitterSubmit to Reddit
rubick cube
Credit: DALE PURVES, American Scientist

Check out the red chips in these two Rubik cubes. Though these chips in the two pictures might look like the same colour, only shaded differently, the ones on the left are actually orange and the ones on the right are purple. Don’t stress yourself too much with this, because it will likely get you nowhere. A four-month infant, however, can spot these differences instantly.

That’s because very young babies haven’t yet developed a crucial perceptual skill that enables us to navigate the world properly, something called perceptual consistency, also known as Object Constancy, or Constancy Phenomenon.

To understand how this works, we first need to establish that what our retinas record is different from the images decoded by the brain that we know as sight. This evolutionary adaption appeared because otherwise our minds would simply be engulfed in chaos by the constantly shifting lighting conditions, but also the shape of objects.

Imagine what it’s like to be consciously aware of people growing physically bigger as they approach you, objects changing shape as they move or colours changing as the lighting changes. You won’t be able to do anything as you try to wrap your mind around all the chaos. That’s why our brains rely on a perception and not recording, making it so things like site, shape, lightness and colour are consistent. Although a bus moving towards a bus stop changes in size from a dot to twice your height, we don’t perceive it as having grown in size — we’re capable of realising the bus has the same size, rectangular shape, and brightness as it had in the distance.

It’s really a game changer, although some faulty information like optical illusions sometimes slip in — a small price to pay, really, for the ability to make sense of the world. But little babies don’t have this consistency fully developed yet. The three snails in the image below, for instance, were featured in a recent paper published by Japanese psychologists at the Chuo University led by Professor Jiale Yang. Which two images are the most similar out of the three?

Computer generated renditions of the same 3D object. Credit: YANG ET AL,
Computer generated renditions of the same 3D object. Credit: YANG ET AL.

If you answered A and B, you’re wrong — it’s B and C, as these two images of the snail are the most similar in terms of pixel intensity. Even though the physical disparities between B and C are small, we adults think this pair looks the most different. Infants, however, were able to identify the right discrepant pair almost immediately, the researchers found.

Of course, you can’t ask a baby which pair is the most similar because “ga, ga, guu”. Instead, Yang and colleagues enlisted  42 babies, aged 3 to 8 months and put them in front of a computer screen with images rendered from real 3-D objects such as the snails. Previously, it was established that when babies are presented with a novel object, they spend more time looking at it than a familiar item. The researchers found the babies looked at the first and second image for an equivalent amount of time, suggesting they found both images novel and different.

RelatedPosts

Pregnant women living near oil and gas wells are 40% more likely to birth low-weight babies
Emotions shape how you see the world — quite literally
Your brain tricks you into seeing difficult goals as less appealing
A matter of taste: tongue differences shape our palate

The data shows infants aged 3 to 4 months old have a striking ability to spot physical disparities between images, but this ability is gradually lost starting at the age of 5 months. Around age 7 to 8 months, the babies start to discriminate surface properties like glossy vs. matte and lose this skill.

Previously, other research found that as babies grow up they lose other perceptual skills that adults don’t have like being able to differentiate between very subtle differences in the faces of monkeys, or the  ability to distinguish speech sounds in languages other than spoken by their own families. Four-month-old babies are also able to tell which crossed foot actually got a tickle, unlike adults who often mistake which hand is getting touched when they cross their hands, for instance.

In other words, we’re most objective during our very first months of life but gradually slip into subjectivity as we age.

Tags: Babiesperception

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Animals

Crows seem to understand geometry — and we thought only humans could

byMihai Andrei
4 weeks ago
Mind & Brain

Our brain doesn’t perceive time as a clock. Instead, time flows with experiences, study finds

byTibi Puiu
10 months ago
News

‘You’re not listening!’ When someone disagrees, we tend to think they’re not listening — even when they are

byTibi Puiu
1 year ago
Mind & Brain

The bizarre world of people who see ‘demonic’ faces

byTibi Puiu
1 year ago

Recent news

This car-sized “millipede” was built like a tank — and had the face to go with it

May 9, 2025

Climate Change Is Breaking the Insurance Industry

May 8, 2025

9 Environmental Stories That Don’t Get as Much Coverage as They Should

May 8, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.