ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Record-breaking binary pair stars orbit each other in less than a day

It's the closest and oldest ultracool dwarf binary ever observed.

Jordan StricklerbyJordan Strickler
January 12, 2023
in Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
Artist’s impression shows an eclipsing binary star system. (Credit: ESO/L. Calçada)

If you ever thought the year just flew by, you’ve obviously never been to the LP 413-53AB star system. Astronomers from Northwestern and the University of California San Diego (UC SanDiego) have found the most compact ultracool dwarf binary system ever observed. The distance between the two stars, located in the constellation Taurus, is so small that it would take less than one Earth-day to revolve around both of them. Each ultracool dwarf star has a “year” that lasts only 20.5 hours.

“It’s exciting to discover such an extreme system,” said Chih-Chun Hsu, a Northwestern astrophysicist who led the study. “In principle, we knew these systems should exist, but no such systems had been identified yet.”

Ultracool dwarfs are a class of very low-mass stars that are so cool they emit their light primarily in the infrared, making them completely invisible to the naked eye. Nonetheless, they are one of the most common stellar varieties.

Until now, astronomers had only found three short-period ultracool dwarf binary systems, all of which are just up to 40 million years old, relatively young in the cosmos’ history. LP 413-53AB, on the other hand, is estimated to be billions of years old, about the same age as our sun. However, the new find has an orbital period at least three times shorter than all ultracool dwarf binaries discovered thus far.

An illustration shows how close the ultracool dwarf binary stars currently are and how that closeness has changed over time. (Credit: Adam Burgasser/UC San Diego)

The team first discovered the strange binary system while exploring archival data. Hsu had previously created an algorithm that can use spectral data to make a model of a star. Spectral data can be used to figure out a star’s chemical make-up, temperature, gravity and rotation by looking at the spectrum of light it sends out. This analysis also shows the star’s radial velocity, or how fast it moves toward and away from the observer.

Hsu originally thought there was only one star in the system because early observations caught it when the stars were roughly aligned and their spectral lines overlapped. Later spectral data showed, however, that the spectral lines had split into pairs as they had moved in opposite directions as the stars orbited the galaxy. Essentially, Hsu saw that the star system was actually made up of two stars.

“When we were making this measurement, we could see things changing over a couple of minutes of observation,” said Adam Burgasser, Hsu’s advisor while Hsu was attaining his Ph.D. at UC San Diego. “Most binaries we follow have orbit periods of years. So, you get a measurement every few months. Then, after a while, you can piece together the puzzle. With this system, we could see the spectral lines moving apart in real time. It’s amazing to see something happen in the universe on a human time scale.”

RelatedPosts

Double trouble: binary star systems can be dangerous for exoplanets
Weirdest Planetary System Ever? Meet the Planet That Spins Perpendicular to Its Stars
Can planets orbit multiple star systems like in Star Wars?

Hsu then investigated the phenomenon using the large telescopes at the W.M. Keck Observatory.  The data supported Hsu’s predictions. The two stars are about one-hundredth as far apart as the distance between the Earth and the Sun. 

“This is remarkable, because when they were young, something like 1 million years old, these stars would have been on top of each other,” Burgasser said.

Tags: binary star systemLP 413-53ABultracool dwarf

ShareTweetShare
Jordan Strickler

Jordan Strickler

A space nerd and self-described grammar freak (all his Twitter posts are complete sentences), he loves learning about the unknown and figures that if he isn’t smart enough to send satellites to space, he can at least write about it. Twitter: @JordanS1981

Related Posts

This is an artist’s impression of the exoplanet 2M1510 (AB) b’s unusual orbit around its host stars, a pair of brown dwarfs. The newly discovered planet has a polar orbit, which is perpendicular to the plane in which the two stars are travelling. Polar planets around single stars had been found before, as well as polar discs of gas and dust capable of forming planets around binary stars. But thanks to ESO’s Very Large Telescope (VLT) this is the first time we have strong evidence that such a planet actually exists in a polar orbit around two stars. The two brown dwarfs appear as a single source in the sky, but astronomers know there are two of them because they periodically eclipse each other. Using the UVES spectrograph on the VLT they measured their orbital speed, and noticed that their orbits change over time. After carefully ruling out other explanations, they concluded that the gravitational tug of a planet in a polar orbit was the only way to explain the motion of the brown dwarfs.
Astronomy

Weirdest Planetary System Ever? Meet the Planet That Spins Perpendicular to Its Stars

byMihai Andrei
2 months ago
Astronomy

Can planets orbit multiple star systems like in Star Wars?

byPaula Ferreira
3 years ago
Space

Double trouble: binary star systems can be dangerous for exoplanets

byMihai Andrei
12 years ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.