ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

NASA astronomers find the fastest exoplanet system at 1.2 million miles per hour

The blistering system could be traveling at just under the Milky Way's escape velocity.

Jordan StricklerbyJordan Strickler
February 18, 2025
in Astronomy, Science, Space
A A
Edited and reviewed by Mihai Andrei
Share on FacebookShare on TwitterSubmit to Reddit
Artist’s concept visualizing stars near the center of our Milky Way galaxy. Each has a trail indicating its speed –– the longer the trail, the faster it’s moving. The newly found system is centered. (Credit: NASA/JPL-Caltech/R. Hurt)

NASA scientists have detected a star and trailing exoplanet that may be sailing through the Milky Way with unprecedented speed. The star-and-planet duo, if confirmed, would set a record for the fastest-known exoplanet system – moving, by one estimate, at a blistering 1.2 million miles per hour, nearly double our solar system’s speed.

Exoplanet goes whoosh!

The system burst onto astronomers’ radar in 2011 when the Microlensing Observations in Astrophysics (MOA) project first spotted light signatures that hinted at two objects crossing paths with a background star’s light. Now, after analyzing archival data and turning to the telescopes of Keck Observatory in Hawaii and ESA’s Gaia satellite, a team led of astronomers believes they’ve pinned down the system’s true identity.

The team is led by Sean Terry, a postdoctoral researcher at the University of Maryland, College Park and NASA’s Goddard Space Flight Center, and the study was published in The Astronomical Journal.

“We think this is a so-called super-Neptune world orbiting a low-mass star at a distance that would lie between the orbits of Venus and Earth if it were in our solar system,” Terry said. “If so, it will be the first planet ever found orbiting a hypervelocity star.”

A super-Neptune is essentially a planet larger and more massive than our familiar Neptune, but smaller than a gas giant like Jupiter.

It wasn’t even clear this is possible

Hypervelocity stars, so-called for their extraordinary speeds, are believed to be propelled by powerful gravitational interactions in the galactic center or potentially ejected from stellar collisions.

Researchers have spotted several such stars before, but it was unclear what happens to their planets. Do they just come along for the ride, bracing extreme speeds and chaotic origins, or are they catapulted someplace else? If the research team is correct, it suggest that in some cases, the planet can come along for the ride.

RelatedPosts

No Content Available

At the heart of this discovery is microlensing, a curious quirk of Einstein’s theory of general relativity. When an object passes in front of a background star, its gravity warps space-time, acting like a natural magnifying lens and brightening the star’s light from our perspective. This brightening betrays the presence of the intervening object. This is what allowed researchers to characterize the fast objects.

“Determining the mass ratio is easy,” said David Bennett, a senior research scientist at the University of Maryland, College Park and Goddard, who co-authored the new paper and led the original study in 2011. “It’s much more difficult to calculate their actual masses.”

The 2011 discovery team suspected the microlensed objects were either a star about 20% as massive as our Sun and a planet roughly 29 times heavier than Earth, or a nearer “rogue” planet about four times Jupiter’s mass with a moon smaller than Earth. Follow-up observations have tipped the scale in favor of the star-planet combination, especially after the researchers spotted what could well be the star in question.

What we know about this system

Measurements suggest it lies some 24,000 light-years away, nestled in the Milky Way’s densely populated galactic bulge, and streaking through the cosmos at a minimum of 1.2 million miles per hour. However, in their paper, the authors state that if it’s also moving toward or away from us, it must be moving even faster. Its true speed may even be high enough to exceed the galaxy’s escape velocity of 1.2 million miles per hour.

But uncertainties remain.

“To be certain the newly identified star is part of the system that caused the 2011 signal, we’d like to look again in another year and see if it moves the right amount and in the right direction to confirm it came from the point where we detected the signal,” Bennett said.

If the star does not move as expected, then the data may favor the “rogue planet” scenario.

More definitive answers may soon arrive with NASA’s upcoming Nancy Grace Roman Space Telescope.

“In this case we used MOA for its broad field of view and then followed up with Keck and Gaia for their sharper resolution, but thanks to Roman’s powerful view and planned survey strategy, we won’t need to rely on additional telescopes,” Terry said. “Roman will do it all.”

Tags: Hypervelocity starsMicrolensing Observations in Astrophysics

ShareTweetShare
Jordan Strickler

Jordan Strickler

A space nerd and self-described grammar freak (all his Twitter posts are complete sentences), he loves learning about the unknown and figures that if he isn’t smart enough to send satellites to space, he can at least write about it. Twitter: @JordanS1981

Related Posts

No Content Available

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.