ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Einstein’s General Relativity passes the test at the centre of our Galaxy

A brave star and a supermassive black hole confirm Einstein's theory of general relativity.

Rob LeabyRob Lea
July 26, 2019
in Astronomy, Astrophysics, Physics, Space, Telescopes
A A
Share on FacebookShare on TwitterSubmit to Reddit

Measurements of a star passing close to the supermassive black hole at the centre of the Milky Way confirms the predictions of Einstein’s theory of general relativity in a high gravity environment.

An artist visualization of the star S0–2 as it passes by the supermassive black hole at the Galactic centre. As the star gets closer to the supermassive black hole, light it emits experiences a gravitational redshift that is predicted by Einstein's General Relativity. By observing this redshift, we can test Einstein's theory of gravity (Nicole R. Fuller, National Science Foundation)
An artist visualization of the star S0–2 as it passes by the supermassive black hole at the Galactic centre. As the star gets closer to the supermassive black hole, light it emits experiences a gravitational redshift that is predicted by Einstein’s General Relativity. By observing this redshift, we can test Einstein’s theory of gravity (Nicole R. Fuller, National Science Foundation)

A detailed study of a star orbiting the supermassive black hole at the centre of our Galaxy, reveals that Einstein’s theory of general relativity is accurate in its description of the behaviour of light struggling to escape the gravity around this massive space-time event.

The analysis — conducted by Tuan Do, Andrea Ghez and colleagues — involved detecting the gravitational redshift in the light emitted by a star closely orbiting the supermassive black hole known as Sagittarius A*. The redshift was measured as the star reached the closest point in its orbit — which has a duration of 16 years — to the black hole.

Lasers from the two Keck Telescopes propagated in the direction of the Galactic centre. Each laser creates an artificial star that can be used to correct for the blurring due to the Earth’s atmosphere. (Ethan Tweedie) 
Lasers from the two Keck Telescopes propagated in the direction of the Galactic centre. Each laser creates an artificial star that can be used to correct for the blurring due to the Earth’s atmosphere. (Ethan Tweedie)

The team found that the star experienced gravitational redshift — which occurs when light is stretched to longer wavelengths and towards the red ‘end’ of the electromagnetic spectrum by the effect of gravity — as it gets closer to the black hole,  conforming to Einstein’s theory of general relativity and its predictions regarding gravity.

At the same time, the results defy predictions made by the Newtonian theory, which has no explanation for gravitational redshift.

Ghez says: “(The findings are) a transformational change in our understanding about not only the existence of supermassive black holes but the physics and astrophysics of black holes.”

The major difference between general relativity and the Newtonian calculation of gravity is, that whereas Newton envisioned gravity as a force acting between physical objects, Einstein’s theory saw gravity as a geometric phenomenon.

RelatedPosts

Biggest space picture ever: a 46 billion megapixel view of the Milky Way
When Galaxies Collide: Triple Black Hole System Discovered
Ginormous hydrogen clouds whizz around the Milky Way at phenomenal speeds
This is what quantum entanglement looks like

The presence of mass ‘curves’ space it occupies. Physical objects, including light, must then follow this curvature. As John Wheeler infamously put it: “matter tells space how to curve, space tells matter how to move.”

Testing relativity in regions of high gravity

Image of the orbits of stars around the supermassive black hole at the centre of our galaxy. Highlighted is the orbit of the star S0–2. This is the first star that has enough measurements to test Einstein’s General Relativity around a supermassive black hole. [Credit: Keck/UCLA Galactic Center Group]
Image of the orbits of stars around the supermassive black hole at the centre of our galaxy. Highlighted is the orbit of the star S0–2. This is the first star that has enough measurements to test Einstein’s General Relativity around a supermassive black hole. [Credit: Keck/UCLA Galactic Center Group]

The new research resembles an analysis conducted last year by the GRAVITY collaboration, except in this new expanded analysis, the team report novel spectra data.

Although general relativity has been thoroughly tested in relatively weak gravitational fields — such as those on Earth and in the Solar System—before last year, it had not been tested around a black hole as big as the one at the centre of the Milky Way.

Observations of the stars rapidly orbiting Sagittarius A *provide a method for general relativity to be evaluated in an extreme gravitational environment.

Do explains why these kind of tests are important:

“We need to test GR in extreme environments because that’s where we think the theory might break down.”

“If we can see which predictions from general relativity have deviations, that gives us clues as to how to build a better model of gravity.”

A figure showing the challenges the Ghez team had in processing decades of image data and spectroscopy input to follow the star S0–2. (Zina Deretsky, National Science Foundation)
A figure showing the challenges the Ghez team had in processing decades of image data and spectroscopy input to follow the star S0–2. (Zina Deretsky, National Science Foundation)

To obtain their results, the team analyzed new observations of the star S0–2 as it made its closest approach to the enormous black hole in 2018. They then combined this data with measurements Ghez and her team have made over the last 24 years.

The team has many avenues of investigations available to them from here, Tuan tells me.

He continues: “Two of them I’m excited about are testing space-time around the black hole by looking at the orbit of the star S0–2.”

“GR predicts that the orbit should precess, or rotate, meaning that it won’t come back where it started.”

The team should also be able to start using more stars other than S0–2 for these tests as the time baseline of observations increase and technology improves

Do concludes: “ These measurements open a new era of GR tests at the Galactic centre so it’s very exciting.”


This research appears in the 26 July 2019 issue of Science.

Tags: albert einsteingeneral relativitymilky waySagittarius A*supermassive black hole

Share43TweetShare
Rob Lea

Rob Lea

Robert is a member of the Association of British Science Writers and the Institute of Physics, qualified in Physics, Mathematics and Contemporary science.

Related Posts

Archaeology

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

byTibi Puiu
2 weeks ago
News

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

byTibi Puiu
2 months ago
GMT029_06_47_Don Pettit_OST FWD dragon
Great Pics

An Astronaut Just Captured a Jaw-Dropping Photo of Earth and the Milky Way from Space

byTibi Puiu
3 months ago
News

New research suggests more supermassive black holes than we ever knew

byJordan Strickler
4 months ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.