ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Alien life

Biofluorescence shining light on the search for alien life

Worlds with a fluorescent glow may indicate signs of alien life.

Rob LeabyRob Lea
August 14, 2019
in Alien life, Astronomy, Astrophysics, Science, Space, Telescopes
A A
Share on FacebookShare on TwitterSubmit to Reddit

The use of ultraviolet flares from red suns and biofluorescence may provide astronomers with vital life signs in the universe

Illustration by Wendy Kenigsberg/Matt Fondeur/Cornell University
Illustration by Wendy Kenigsberg/Matt Fondeur/Cornell University

A new method of searching for life in the cosmos has been pioneered by astronomers from Cornell University.

The team propose that astronomers could utilise harsh ultraviolet radiation flares from red suns — once thought to destroy surface life on planets — to assist in the discovery of hidden biospheres. The team’s study — published in the journal Monthly Notices of the Royal Astronomical Society — suggests that ultraviolet radiation could trigger biofluorescence — a protective glow — from life on exoplanets.

Jack O’Malley-James, a researcher at Cornell’s Carl Sagan Institute and the study’s lead author, says: “This is a completely novel way to search for life in the universe.

“Just imagine an alien world glowing softly in a powerful telescope.”

Biofluorescence, similar to that found in coral, could be used by astronomers to search for life (S.E.A. Aquarium)

Some undersea coral on Earth use a similar form of biofluorescence that the team intend to utilise in the search for life. The coral does this in order to render the sun’s harmful ultraviolet radiation into harmless visible wavelengths, in the process, creating a beautiful radiance.

“Maybe such life forms can exist on other worlds too, leaving us a telltale sign to spot them,” points out Lisa Kaltenegger, associate professor of astronomy and director of the Carl Sagan Institute.

RelatedPosts

Astronomers discover an exoplanet system with rhythm
Scientists name new glow-in-the-dark sea worms after supernatural beings from Japanese folklore
Mars could become colonized by stowaway Earthling tiny space travelers
‘Baby’ planet two to three times the size of Jupiter discovered

She points out that in our search for exoplanets, we have searched for ones which look like our own planet. This research plays off the idea the biofluorescence may not have evolved on Earth exclusively.

In fact, as this is a form of defence from harsh UV radiation, logic suggests that its usefulness — and thus, the chance of development — would be increased around stars where UV flares are commonplace.

A large fraction of exoplanets — planets beyond our solar system — reside in the habitable zone of M-type stars. This type of star — the most commonly found in the universe — frequently flare, and when those ultraviolet flares strike their planets, biofluorescence could paint these worlds in beautiful colours.

The next generation of Earth- or space-based telescopes can detect the glowing exoplanets — should they exist.

Ultraviolet rays are transformed into less-energetic and therefore less harmful wavelengths through a process called “photoprotective biofluorescence.” This should leave a very specific signal which astronomers can search for.

Kaltnegger continues: “Such bio fluorescence could expose hidden biospheres on new worlds through their temporary glow when a flare from a star hits the planet.”

The astronomers used emission characteristics of common coral fluorescent pigments from Earth to create model spectra and colours for planets orbiting active M stars to mimic the strength of the signal and whether it could be detected for life.

Proxima b — a potentially habitable world found orbiting the active M star Proxima Centauri in 2016 could qualify as a target for such a search. The rocky exoplanet has been one of the most optimal space travel destinations due to the proximity of the star it orbits — although such jaunts are a concern for the far-future.

Jack O’Malley-James, continues: “These biotic kinds of exoplanets are very good targets in our search for exoplanets, and these luminescent wonders are among our best bets for finding life on exoplanets.”

Large, land-based telescopes that are being developed now for 10 to 20 years into the future may be able to spot this glow.

Kaltenegger concludes: “It is a great target for the next generation of big telescopes, which can catch enough light from small planets to analyze it for signs of life, like the Extremely Large Telescope in Chile.”


Original research: Biofluorescent Worlds II: Biological Fluorescence Induced by Stellar UV Flares, a New Temporal Biosignature. Jack T O’Malley-James, Lisa Kaltenegger.


Tags: bioluminescenceexoplanetsextraterrestrial lifesolar flares

ShareTweetShare
Rob Lea

Rob Lea

Robert is a member of the Association of British Science Writers and the Institute of Physics, qualified in Physics, Mathematics and Contemporary science.

Related Posts

Astronomy

Astronomers thought mini-Neptunes had atmospheres with water or hydrogen. This one has neither

byMihai Andrei
4 months ago
{"shape": [8200, 8200, 3]}
Alien life

Are aliens real? Here’s what the scientists think

byMihai Andrei
4 months ago
superflare
Science

Superflares on Sun-Like Stars Are Much More Common Than We Thought

byJordan Strickler
5 months ago
News

A sample from Ryugu asteroid is teeming with life — but it’s not aliens

byMihai Andrei
6 months ago

Recent news

A Team of Researchers Brought the World’s First Chatbot Back to Life After 60 Years

May 22, 2025
default

From Farms to Lost Cities, Drones Are Quietly Revolutionizing Modern Science

May 22, 2025

Professional Bodybuilders Are Five Times More Likely to Die Suddenly Than Amateurs. Yes, it’s Because of the Drugs

May 22, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.