ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

The long-term effects of space flight on astronauts could be more concerning than thought

Space can play havoc on the human body, but researchers are figuring out ways to tackle its ill effects.

Jordan StricklerbyJordan Strickler
July 20, 2022
in Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
NASA astronaut Mark Vande Hei jogs on a treadmill inside the space station. (Credit: NASA/Mark T. Vande Hei)

We already know that space does some weird things to the human body. The eyes, bones, DNA, and muscles all get distorted in one way or another due to the lack of gravity in orbit. Now a group of scientists from Doshisha University in Japan is taking the research of muscular changes a step further as they investigate strategies to keep astronauts from suffering neuromuscular problems.

The human body as we know it today was shaped by the continual pull of the Earth’s gravity. But since bones and muscles don’t have to work as hard to sustain the body’s weight due to the low gravity of space, this could cause them to weaken or waste away over extended stays in space.

Human neck and leg muscles are especially affected by prolonged exposure to a microgravity environment in a variety of ways, including atrophy, changes in fiber phenotypic traits, gene and protein expression, and contractile qualities. This is particularly true for muscles that defy gravity, such as the soleus (the calf muscle that runs from just below the knee to the heel) and adductor longus (one of the adductor muscles of the hip.

The effects of a decrease in gravity, or”unloading,” on neuromuscular properties have recently become the subject of investigation. The researchers in Japan looked at how the neuromuscular system’s morphology, functionality and metabolism change in the presence of less antigravitational activity.

The team then examined how motor neuron activity in microgravity affected the development of neuromuscular characteristics in simulation models of humans and animals. According to their research, afferent neural activity, which is the information transfer from working skeletal muscle to the central nervous system, is an important factor in controlling both the characteristics of the muscle and the activity of the brain.

Sarcomeres, the structural component of muscles, undergo modification as a result of the reduction of antigravitational muscular activities, the researchers found. This reduction of sarcomeres causes a decline in force development and, ultimately, muscle atrophy. Electromyograms of muscles like the soleus and the adductor longus that contract against gravity exhibit a drop in amplitude. This demonstrates how being in a low-gravity environment affects both the muscles and the nerves.

What astronauts can do to preserve their muscles and nerves

Gravity unloading has a negative impact on motor control by altering the mechanics and reducing the synchronization between antagonist muscles. To lessen the neuromuscular effects of reduced gravity and to maintain physical fitness, those aboard the ISS need equipment like treadmills, ergometers, and resistance training machines. Astronauts who worked out frequently aboard the International Space Station (ISS) nevertheless had trouble walking when they returned from missions. Exercise-based therapy may not always be effective in preventing neuromuscular alterations.

RelatedPosts

Stopping muscle atrophy at old age could be possible
Researchers sent human muscle cells to space. They came back older
Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?
How fire burns in zero gravity

Every time astronauts are subjected to a microgravity condition for a period of six months or longer on the ISS (and certainly longer for a trip to Mars), new difficulties can arise. Major changes need to be made as a result of this evaluation, particularly in the area of astronaut health.

It would seem that adequately exercising the soleus muscle can reduce the likelihood of that muscular atrophy. Therefore, whether walking or jogging,  the researchers found that astronauts should maintain a slow pace and land on their backs when exercising in microgravity. Additionally, passively stretching the soleus muscle on a regular basis appears to be advantageous. In order to develop adequate countermeasures to address neuromuscular issues that may arise during future long-term human space exploration missions, knowledge gathered from a unique viewpoint, such as that addressed in this work, may be crucial.

Finding a means to prevent bone atrophy will help more people than just astronauts, though. The general populace on Earth could also benefit from similar exercise routines, especially those suffering from osteoporosis.

Astronauts who dwell in space endure sickness and immobility more quickly than those who age normally on Earth because bone tissue is lost quicker than it is made. Those with bone issues residing on the Pale Blue Dot will benefit from the improvement of these exercise regimens and the discovery of novel medications to treat bone loss in space.

The study appeared in a special edition of Neuroscience & Biobehavioral Reviews, which was published to commemorate the first lunar landing.

Tags: atrophyDoshinshagravitymuscle atrophy

ShareTweetShare
Jordan Strickler

Jordan Strickler

A space nerd and self-described grammar freak (all his Twitter posts are complete sentences), he loves learning about the unknown and figures that if he isn’t smart enough to send satellites to space, he can at least write about it. Twitter: @JordanS1981

Related Posts

News

This Bold New Theory Could Finally Unite Gravity and Quantum Physics

byTibi Puiu
3 months ago
News

How a suitcase-sized NASA device could map shrinking aquifers from space

byJordan Strickler
4 months ago
News

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

byTibi Puiu
5 months ago
News

Astronomers Shocked as JWST Uncovers Massive Galaxies That Challenge Gravity Theory. Is Dark Matter Theory Wrong?

byTibi Puiu
9 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.