ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Scientists have finally figured out where the starfish head is: it’s everywhere

Study shows the arms are actually extensions of its head

Fermin KoopbyFermin Koop
November 3, 2023
in Animals, Environment, News, Science
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit

When looking at a fish, it’s very clear which end is the head and which is the tail. But with the sea star, also known as the starfish, this isn’t the case. Its five identical arms have puzzled scientists for centuries. Plenty of biologists have tried to understand what constitutes the head of the starfish and now, for the first time, they may have figured out the most likely answer.

starfish
Micro-CT scan of sea star showing the skeleton (grey), digestive system (yellow), nervous system (blue), muscles (red) and water vascular system (purple). Image credits: University of Southampton.

An international team of researchers used genetic and molecular tools to map out the body of starfish, creating a 3D atlas of their gene expression. They found that the “head” of a starfish isn’t in any one place. Instead, the headlike regions are distributed, with some in the center of the sea star as well as in the center of each limb of its body.

Starfish, along with sea urchins and sand dollars, belong to a group of animals called echinoderms. They have a unique fivefold symmetric body plan, which means that their body parts are arranged in five equal sections. This is different from their bilateral ancestors, which have a left- and right-hand side, as seen in humans and many other animals.

“The answer is much more complicated than we expected,” Laurent Formery, the lead author of the new study and a postdoc researcher in the laboratories of Stanford University and the University of California, said in a news release. “It is just weird, and most likely the evolution of the group was even more complicated than this.”

Mapping stars

In the study, the researchers compared the molecular markers of a sea star to other deuterostomes — a wider animal group that includes echinoderms and bilateral animals, like vertebrates. As they share a common ancestor, the researchers can compare their development and learn more about how echinoderms evolved their unique body plan.

They used a mix of high-tech molecular and genomic techniques to understand where different genes were expressed during the development and growth of sea stars. This included RNA tomography to pinpoint where genes are expressed in tissue and in situ hybridization, a technique that zeroes in on a specific RNA sequence in a cell.

With these, they created a 3D map of gene expression in the sea star to identify where specific genes are being expressed during the development phase. Specifically, they mapped the expression of genes that control the development of the ectoderm. This is known to mark the front-to-back patterning in the bodies of other deuterostomes.

They found this patterning was linked with the midline-to-lateral axis of sea star arms, with the midline of the arm representing the front and the outermost lateral parts being more like the back. Additionally, in deuterostomes, there’s a set of genes expressed in the ectoderm of the trunk, which is the “central body” (as opposed to the “head”). But in starfish, many of these trunk genes aren’t expressed in the ectoderm.

RelatedPosts

Loneliest frog in the world is looking for a Match to save his species
This sexually transmitted virus castrates crickets, but encourages sexual activity
Antarctic icefish produces antifreeze to maintain liquid blood
Nanobodies On The Road To Curing Parkinson’s Disease

“When we compared the expression of genes in a starfish to other groups of animals, like vertebrates, it appeared that a crucial part of the body plan was missing. The genes that are typically involved in the patterning of the trunk of the animal weren’t expressed in the ectoderm,” Jeff Thompson, study author, said in a news release.

This then suggests that sea stars and other echinoderms could have evolved their five-section body plan by losing the trunk region of their bilateral ancestors — so starfish are “mostly head-like animals”. This would have allowed the echinoderms to move and feed differently than bilaterally symmetrical animals, suggesting their evolution was much more complex than expected.

The study was published in the journal Nature.

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Environment

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

byTudor Tarita
2 days ago
Anthropology

Women Rate Women’s Looks Higher Than Even Men

byTudor Tarita
2 days ago
Art

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

byTibi Puiu
2 days ago
News

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

byTibi Puiu
3 days ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.