Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result

Home → Science

The recipe for life may have another ingredient

Scientists are cooking life.

Tibi Puiu by Tibi Puiu
December 3, 2018
in Biology, News, Science

Illustration of early Earth. Credit: Harvard University.
Illustration of early Earth. Credit: Harvard University.

Billions of years ago, from the fiery depths of a prehistoric Earth constantly bombarded by asteroids and engulfed in a haze of noxious gases, life found a way. Exactly how and under what conditions are some of the questions scientists have been trying to answer for the past century. Making life out of inanimate matter is not exactly like cooking lasagna, but with every attempt, researchers are coming closer to the winning recipe. For instance, a recent study found a new candidate ingredient for primordial life.

…and then just add water

Researchers who have made it their life’s work to unravel the origin of life tend to focus on RNA, a molecule which stores and transmits genetic information in addition to synthesizing protein. Many scientists regard RNA as the cornerstone of all life on Earth, which probably carried the first information required for creating life. To make RNA, however, you need the right nucleotides — the building blocks for both RNA and DNA.

RNA is made out of four nucleotides: adenine, guanine, cytosine, and uracil (A, G, C, and U). Previously, scientists were able to find precursors to C and U, but molecules that combine into A and G at conditions thought to occur more than four billion years ago have proven to be more elusive,

Researchers at Harvard University led by Jack W. Szostak, a professor of chemistry and chemical biology, have been following a different lead. Their research suggests that its possible that RNA could have started with a different set of nucleotide bases, using inosine instead of guanine. “Our study suggests that the earliest forms of life (with A, U, C, and I) may have arisen from a different set of nucleobases than those found in modern life (A, U, C, and G),” said Seohyun Kim, a graduate student at Szostak’s lab.

Like everybody else, initially, the researchers also tried to craft A and G in the lab. However, the purine-based nucleotides proved to be unstable. They then settled for two slightly modified versions of adenosine and inosine: 8-oxo-adenosine and 8-oxo-inosine.

The problem was that when the researchers assembled the nucleotides into RNA, the result wasn’t satisfying. The 8-oxo-based RNA still looked and behaved like RNA, but not nearly at the speed and accuracy needed to copy itself efficiently. But this ‘failure’ actually led to a happy accident.

When the researchers compared 8-oxo-inosine against a control, inosine, the latter enabled RNA to replicate with high speed and few errors. Writing in the Proceedings of the National Academy of Sciences, the authors note that inosine “turns out to exhibit reasonable rates and fidelities in RNA copying reactions. We propose that inosine could have served as a surrogate for guanosine in the early emergence of life.”

The findings are important for research focused on the origin of life based on RNA. In time, this work might help confirm the hypothesis or help scientists on other paths. Understanding how life assembled out of basic building blocks is important not only for our own history but also for our search of life on other planets.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Key ingredient for life on Earth may have come from outer space
  2. A recipe for disaster: antimicrobial resistance may lead to dystopian scenarios
  3. Phosphorus — a crucial ingredient for life — might be a lot less common in the universe than we thought
  4. Basic Ingredient of Life Discovered in Space
  5. Green tea ingredient may target protein to kill oral cancer cells
Tags: primordial life

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW