ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Smallest laser is so tiny you can’t see it with the naked eye

Tibi PuiubyTibi Puiu
July 30, 2012
in Physics, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Scientists Have Taken the First Ever Photos of Atoms Interacting in Free Space
Chinese scientists claim they’ve figured out how to power stealth submarines with lasers
Why typhoons and hurricanes make beautiful, pink (or violet) skies
Ultra-thin flat lens leads to smaller, better, cheaper optical devices: from telescopes to VR goggles

Scientists at the University of Texas at Austin, in collaboration with colleagues in Taiwan and China, have developed what’s considered to be the world’s smallest laser; a device so tiny, that it’s invisible to the naked eye. The laser is heralded as a breakthrough in the emerging photonic technology with applications from computing to medicine.

Specialists in photon-based technologies, like ultrafast computer chips, highly sensitive biosensors for detecting, treating and studying disease or the next-generation communication devices, will tell you at any time that the key to pushing the envelope forward in the field is based on two very important parameters: energy and size, and both need to be smaller. You can only get so low until you hit a brick wall, though, or what’s known for physicists as the three-dimensional optical diffraction limit.

Illustration of the nanoscale semiconductor structure used for demonstrating the ultralow-threshold nanolaser. A single nanorod is placed on a thin silver film (28 nm thick). The resonant electromagnetic field is concentrated at the 5-nm-thick silicon dioxide gap layer sandwiched by the semiconductor nanorod and the atomically smooth silver film.
Illustration of the nanoscale semiconductor structure used for demonstrating the ultralow-threshold nanolaser. A single nanorod is placed on a thin silver film (28 nm thick). The resonant electromagnetic field is concentrated at the 5-nm-thick silicon dioxide gap layer sandwiched by the semiconductor nanorod and the atomically smooth silver film.

“We have developed a nanolaser device that operates well below the 3-D diffraction limit,” said Chih-Kang “Ken” Shih, professor of physics at The University of Texas at Austin. “We believe our research could have a large impact on nanoscale technologies.”

In their paper recently published in the journal Science, Shih and colleagues report on the first operation of a continuous-wave, low-threshold laser below the 3-D diffraction limit. When fired, the nanolaser emits a green light. The device is made of a gallium nitride nano-rod , partially filled with indium gallium nitride – both are semiconductor alloys used commonly in LEDs.

The nanorod is the key to the physicists’ success, a material that the Shih lab has been perfecting for more than 15 years. The nanorod is placed on top of a thin insulating layer of silicon that in turn covers a layer of silver film that is smooth at the atomic level. “Atomically smooth plasmonic structures are highly desirable building blocks for applications with low loss of data,” said Shih.

“Size mismatches between electronics and photonics have been a huge barrier to realize on-chip optical communications and computing systems,” said Shangjr Gwo, professor at National Tsing Hua University in Taiwan and a former doctoral student of Shih’s.

The researchers hope this impediment will finally be jumped once “on-chip” communication systems (chips where all processes are contained on the chip) are developed, with the help of the knowledge gained from developing the world’s tiniest laser.

source

Tags: diffractionlaseropticsphotons

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Scientists Have Taken the First Ever Photos of Atoms Interacting in Free Space

byTibi Puiu
1 month ago
Mind & Brain

Scientists Invent a Color Humans Have Never Seen Before

byMihai Andrei
2 months ago
Health

This Futuristic Laser Blood Test May Be the Key to Beating Cancer Early

byTudor Tarita
2 months ago
News

NASA beamed back a laser message from half a billion kilometers away 100 times faster than using radio waves

byTibi Puiu
7 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.