ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

MIT technique can shrink objects down to the nanoscale

The technique can produce structures one-thousandth the size of the originals.

Tibi PuiubyTibi Puiu
December 17, 2018
in News, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

Researchers at MIT have figured a way to create nanoscale structures by shrinking down existing objects by up to 1,000 times their original volume.

MIT engineers have crafted a new technique to create 3-D nanoscale structures by first making a larger structure and then shrinking it. The image shows a complex structure prior to shrinkage. Credit: Daniel Oran.

Producing nanoscale objects smaller than the width of the human hair can be very tricky. Existing technique involve etching patterns with lasers, for instance, but most only work for 2-D surfaces or are very slow and prone to errors when it comes to stacking 3-D objects. There are so challenging limitations as to what materials you can use.

The research team led by MIT professor Edward Boyden found a creative solution. Instead of painstakingly raising a new structure from scratch, the researchers took existing structures and shrunk them down to the desired size.

The technique is based on a process for imaging brain tissue called expansion microscopy. Used by thousands of researchers in biology labs around the world, expansion microscopy involves embedding tissue into a hydrogel and then expanding it. This then enables a high-resolution imaging with a regular microscope. When the process is run in reverse, something which scientists call “implosion fabrication”, relatively large objects can be scaled down to one-thousandth their original size.

First, the process starts with creating a scaffold out of polyacrylate. Then, the scaffold is soaked into a solution that contains certain molecules that attach to the frame when activated by a laser’s light. The fluorescein molecules can be coaxed to attach to certain points of the structure with a high degree of precision.

“It’s a bit like film photography,” co-author Daniel Oran, an MIT graduate student, said in a statement. “A latent image is formed by exposing a sensitive material in a gel to light. Then, you can develop that latent image into a real image by attaching another material, silver, afterwards. In this way implosion fabrication can create all sorts of structures, including gradients, unconnected structures, and multi-material patterns.”

Finally, the object is bathed in an acid, which blocks the negative charges in the polyacrylate, causing the whole structure to shrink.

The biggest limitation of this kind of approach is the inherent trade-off between size and resolution. For instance, an object that’s 1 cubic millimeter can have a resolution of 50 nanometers, whereas a 1 cubic centimeter object has a 500-nanometer resolution.

RelatedPosts

ISS astronauts could use laser cannon to blast off hazardous space junk
Meet the world’s most powerful X-Ray laser
Pentagon funds quantum laser to overcome battlefield challenges
The world’s most powerful laser could put the Death Star to shame

But even so, the technique’s potential applications are numerous, from optics to medicine to robotics.

“There are all kinds of things you can do with this,” said Edward Boyden, an associate professor of biological engineering and of brain and cognitive sciences at MIT. “Democratizing nanofabrication could open up frontiers we can’t yet imagine.”

“With a laser you can already find in many biology labs, you can scan a pattern, then deposit metals, semiconductors, or DNA, and then shrink it down,” Boyden added.

The findings were described in the journal Science. 

Tags: hydrogellaser

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Scientists Superheated Gold to 14 Times Its Melting Point and It Remained Solid

byTibi Puiu
3 weeks ago
Science

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

byTibi Puiu
1 month ago
Mind & Brain

Scientists Invent a Color Humans Have Never Seen Before

byMihai Andrei
4 months ago
Health

This Futuristic Laser Blood Test May Be the Key to Beating Cancer Early

byTudor Tarita
4 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.