Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → Physics

Historic neutrino detection shines new light on the sun

A secondary nuclear fusion process first proposed 30 years ago has now been confirmed by scientists in Italy.

Tibi Puiu by Tibi Puiu
December 2, 2020
in Astrophysics, News, Physics, Space
The Borexino detector is the is the most radiation-free place on Earth. Credit: Borexino Collaboration.

Stars produce copious amounts of energy by fusing hydrogen into helium. This process, known as the proton-proton chain, is thought to dominate energy production in the sun — but since 1990, physicists have theorized that a second process must also occur. This process, known as carbon–nitrogen–oxygen (CNO) cycle, is thought to be responsible for only 1% of the sun’s energy.

In a historic study, scientists have now confirmed neutrinos originating from this up-to-know elusive process.

A step closer to a complete understanding of the sun

Detecting neutrinos — subatomic particles that are very similar to electrons, but have no electrical charge and a very small mass — from this secondary nuclear fusion cycle has been very challenging. It was only after technology improved that scientists could pick up these tiny particles with their highly sensitive detectors at the Italian National Institute for Nuclear Physics’s (INFN) Gran Sasso particle physics laboratory in central Italy.

Buried deep beneath the Apennine Mountains, the INFN lab is the largest underground research center in the world. This is to isolate the huge neutrino detectors from cosmic rays and other background radiation. Trillions of neutrinos pass through the ultrasensitive Borexino detector at INFN every second. However, it can only detect a handful of them each day by looking for faint flashes of light produced by nuclear decay in its dark 300-ton water tank.

Physicists using the Borexino detector have decades of measurements for neutrinos from the sun’s main proton-proton chain reaction — which fuses hydrogen to produce` beryllium, lithium, and boron before they break down into helium. However, neutrinos from the CNO cycle are much harder to spot because our sun is relatively cool, accounting for just 1% of its energy.

But after they enlarged the Borexino detector (which was already huge) and improved its sensitivity, physicists were able to detect seven neutrinos with the signature energy of the CNO cycle.

This is the first direct evidence that the CNO cycle is active in the sun — and most likely in other stars. The CNO cycle is actually the dominant cycle in very large stars. Now, that scientists have detected CNO neutrinos, they will be able to measure the abundance of oxygen, carbon, and nitrogen in the star’s core. In the process, they can better understand what fuels a star and how they form in the first place.

“In the CNO cycle, the fusion of hydrogen is catalysed by carbon, nitrogen and oxygen, and so its rate—as well as the fux of emitted CNO neutrinos—depends directly on the abundance of these elements in the solar core. This result therefore paves the way towards a direct measurement of the solar metallicity using CNO neutrinos,” the physicists affiliated Borexino Collaboration wrote in the journal Nature.

Was this helpful?
Thanks for your feedback!
Related posts:
  1. Lobster nebula shines in new light after infrared observation
  2. Historic flood hits Venice — kills two, destroys historic landmarks
  3. The first water map on the moon shines hope for human colony
  4. Better, simple way to regrow damaged corneas shines hope for blind patients
  5. Underground experiment points to sterile neutrino, a new type of fundamental particle linked to dark matter

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW