ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Want to make better sensors? Just add more noise

A counterintuitive solution could make for better sensors.

Alexandra GereabyAlexandra Gerea
September 9, 2020
in Home science, Physics
A A
Share on FacebookShare on TwitterSubmit to Reddit

Noise is normally the bane of electronic sensors. While biological organisms can make great use of noise, man-made electronics go to great lengths to reduce signal noise as much as possible.

Now, Penn State researchers have found that a small amount of background noise can enhance the performance of light sensors when the light is too dim to sense otherwise.

Artist’s depiction of a phenomenon called stochastic resonance. Image credits: Bessie Terrones, Penn State MRI

The sensor is based on a two-dimensional material called molybdenum disulfide, an inorganic compound used in many high-end sensors. While the sensor used in the study detected light, it could also be used for many other types of sensors as it requires low amounts of energy.

Stochastic resonance (SR) is a phenomenon where a signal that is normally too weak to be detected by a sensor, can be boosted by adding white noise to the signal, which contains a wide spectrum of frequencies.

The key to the technology is a phenomenon called stochastic resonance, where a signal too weak to be detected is boosted by adding white noise on a wide spectrum of frequencies. It’s one of those astounding phenomena, where noise, which is considered detrimental for electronic circuits and communication systems, actually ends up playing a constructive role in the detection of weak signals.

The inspiration for the study came from nature, says lead author Saptarshi Das, an assistant professor of engineering science and mechanics. Saptarshi and colleagues found that if you add just the right amount of background noise, it can actually increase the signal for the sensor.

“For example, a paddlefish that lives in muddy waters cannot actually find its food, which is a phytoplankton called Daphnia, by sight. The paddlefish has electroreceptors that can pick up very weak electric signals from the Daphnia at up to 50 meters. If you add a little bit of noise, it can find the Daphnia at 75 meters or even 100 meters. This ability adds to the evolutionary success of this animal.”

In the study, the team described the process, although the technique has not yet been demonstrated on a silicon photodiode (which would make the device very scalable) — but in theory, any state of the art sensor can be enhanced this way.

RelatedPosts

SpaceX wants to send a Red Dragon to Mars as early as 2018
Tiny Scottish island powers itself 100% with community-owned off-the-grid renewable energy system
Moving snails at least 20m away reverses homing instinct
The UK has some of the least energy-efficient housing in Europe – here’s how to fix this

The finding could help usher in the so-called Internet of Things (the embedding of internet connection to all sorts of sensors) — sensors have become very cheap and accessible, but there’s still plenty of room for improvement when it comes to weak signals. It’s also oftentimes impractical to add expensive, power-hungry equipment to ensure a low signal. The technique is also applicable in environmental sensors such as monitoring emissions or earthquakes.

Journal Reference: Akhil Dodda et al, Stochastic resonance in MoS2 photodetector, Nature Communications (2020). DOI: 10.1038/s41467-020-18195-0

ShareTweetShare
Alexandra Gerea

Alexandra Gerea

Alexandra is a naturalist who is firmly in love with our planet and the environment. When she's not writing about climate or animal rights, you can usually find her doing field research or reading the latest nutritional studies.

Related Posts

Animals

How Bees Use the Sun for Navigation Even on Cloudy Days

byMihai Andrei
7 hours ago
Inventions

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

byMihai Andrei
8 hours ago
Physics

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

byTudor Tarita
9 hours ago
Future

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

byTibi Puiu
9 hours ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.