ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Novel mRNA vaccine against ticks works in guinea pigs

In the US alone, there are 50,000 tick bites reported every year.

Fermin KoopbyFermin Koop
November 22, 2021
in Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

A group of researchers from Yale University have developed an mRNA vaccine that teaches the immune system to identify saliva from tick bites. The vaccine, which proved to be effective in guinea pigs, could prevent ticks from feeding on and then transmitting tick-borne diseases to people, a growing problem in many countries. 

It's a much bigger problem than you think
Image credit: Creative Commons / Jaqueline Mattias.

The vaccine is based on the same mRNA technology that has proven effective against COVID-19. Essentially, the mRNA shot means being injected with genetic material from the target virus instead of the virus itself. The mRNA gives your body instructions to fight the targeted pathogen and then is eliminated. Researchers have been working on mRNA vaccines, but thanks to the great efforts invested in the current pandemic, we’re finally on the right path. 

“There are multiple tick-borne diseases, and this approach potentially offers more broad-based protection than a vaccine that targets a specific pathogen,” senior author Erol Fikrig and Yale researcher said in a statement. “It could also be used in conjunction with more traditional, pathogen-based vaccines to increase their efficacy.”

Lyme disease is the most famous and damaging of them all tick-borne diseases, but it’s not the only one. Lyme, as well as several other diseases, is expanding across North America and Europe, with about 40,000 reported cases in the US per year. Ticks are a potential danger to anyone outdoors, from farmworkers to hikers, and they transmit several pathogens that can cause serious health problems that can even be life-threatening.

The new vaccine is different from those developed by Valneva and Pfizer and it’s only early stages of development but moving forward. The main difference is that it targets the bacteria responsible instead of the tick carrier. They are both promising approaches that could bring a solution to a growing health concern. 

Developing a vaccine

The researchers at Yale developed a new vaccine that trains the immune system to respond to tick bites, exposing it to 19 proteins found in tick saliva. It has mRNA molecules that tell the cells to produce these proteins – just like the mRNA COVID-19 vaccine tells the cells to manufacture coronavirus proteins to shield against the virus. 

In a set of experiments, the team tested the vaccine on guinea pigs. Unlike unvaccinated animals, vaccinated guinea pigs exposed to ticks developed red rashes at the place where they were bitten, suggesting an immune response. The ticks also tended to detach early on without sucking as much blood as they normally would.

RelatedPosts

Researchers zero in on Lyme disease’s ability to resurface months after treatment
The CDC warns that “chronic Lyme” is bogus and the treatments are horrifying and deadly
Preliminary data suggests Moderna’s mRNA flu vaccine is effective
How mRNA vaccines from Pfizer and Moderna work, why they’re a breakthrough and why they need to be kept so cold

The researchers also placed ticks carrying the Lyme disease on both vaccinated and unvaccinated animals. They removed the ticks once the skin rashes appeared on the animals, something that usually happens in the first 18 hours. While none of the vaccinated guinea pigs became infected, half the unvaccinated animals did.

“The vaccine enhances the ability to recognize a tick bite, partially turning a tick bite into a mosquito bite,” Fikrig said in a statement. “When you feel a mosquito bite, you swat it. With the vaccine, there is redness and likely an itch so you can recognize that you have been bitten and can pull the tick off quickly.”

While the vaccine was successfully in guinea pigs, it wasn’t in mice – unable to get a natural resistance after infection. The researchers now plan to test it in other animals, such as rabbits, so to better understand how the immunity of ticks varies in different hosts, and slowly move on towards humans. They also want to develop in the future vaccines for other tick-borne pathogens.

The study was published in the journal Science Transnational Medicine.

Tags: lyme diseasemRNAmRNA vaccinetick

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Health

This mRNA HIV Vaccine Produces the Virus-Fighting Antibodies That Have Eluded Researchers for 40 Years

byTudor Tarita
2 weeks ago
Diseases

Moderna’s flu + Covid jab produces “higher immune response” than two separate shots

byMihai Andrei
1 year ago
Science

The UK is trialing a custom-made vaccine against skin cancer

byMihai Andrei
1 year ago
Health

Pfizer is trying to bring a Lyme disease vaccine back to market, 20 years after the last one was pulled

byAlexandru Micu
3 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.